ﻻ يوجد ملخص باللغة العربية
We theoretically investigate twisted structures where each layer is composed of a strongly correlated material. In particular, we study a twisted t-J model of cuprate multilayers within the slave-boson mean field theory. This treatment encompasses the Mott physics at small doping and self consistently generates d-wave pairing. Furthermore, including the correct inter-layer tunneling form factor consistent with the symmetry of the Cu $d_{x^2-y^2}$ orbital proves to be crucial for the phase diagram. We find spontaneous time reversal (T) breaking around twist angle of $45^circ$, although only in a narrow window of twist angles. Moreover, the gap obtained is small and the Chern number vanishes, implying a non-topological superconductor. At smaller twist angles, driving an interlayer current however can lead to a gapped topological phase. The energy-phase relation of the interlayer Josephson junction displays notable double-Cooper-pair tunneling which dominates around $45^o$. The twist angle dependence of the Josephson critical current and the Shapiro steps are consistent with recent experiments. Utilizing the moire structure as a probe of correlation physics, in particular of the pair density wave state, is discussed.
A central question in the high temperature cuprate superconductors is the fate of the parent Mott insulator upon charge doping. Here we use scanning tunneling microscopy to investigate the local electronic structure of lightly doped cuprate in the an
The two-dimensional t-J model on a frustrating lattice is studied using mean-field variational theories with Gutzwiller approximation. We find that a superconducting state with broken time-reversal symmetry (d+id state) is realized in the parameter r
Because the cuprate superconductors are doped Mott insulators, it would be advantageous to solve even a toy model that exhibits both Mottness and superconductivity. We consider the Hatsugai-Kohmoto model, an exactly solvable system that is a prototyp
We present a systematic study of spin dynamics in a superconducting ground state, which itself is a doped-Mott-insulator and can correctly reduce to an antiferromagnetic (AF) state at half-filling with an AF long-range order (AFLRO). Such a doped Mot
We study the three-band Hubbard model for the copper oxide plane of the high-temperature superconducting cuprates using determinant quantum Monte Carlo and the dynamical cluster approximation (DCA) and provide a comprehensive view of the pairing corr