ترغب بنشر مسار تعليمي؟ اضغط هنا

Ground States of Heisenberg Spin Clusters from Projected Hartree-Fock Theory

127   0   0.0 ( 0 )
 نشر من قبل Shadan Ghassemi Tabrizi
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We apply Projected Hartree-Fock theory (PHF) for approximating ground states of Heisenberg spin clusters. Spin-rotational, point-group and complex-conjugation symmetry are variationally restored from a broken-symmetry mean-field reference, where the latter corresponds to a product of local spin states. A fermionic formulation of the Heisenberg model furnishes a conceptual connection to PHF applications in quantum chemistry and detailed equations for a self-consistent field optimization of the reference state are provided. Different PHF variants are benchmarked for ground-state energies and spin-pair correlation functions of antiferromagnetic spin rings and three different polyhedra, with various values of the local spin-quantum number s. The low computational cost and the compact wave-function representation make PHF a promising complement to existing approaches for ground states of molecular spin clusters, particularly for large s and moderately large N. The present work may also motivate future explorations of more accurate post-PHF methods for Heisenberg spin clusters.



قيم البحث

اقرأ أيضاً

We report results for the ground state energies and wave functions obtained by projecting spatially unrestricted Hartree Fock states to eigenstates of the total spin and the angular momentum for harmonic quantum dots with $Nleq 12$ interacting electr ons including a magnetic field states with the correct spatial and spin symmetries have lower energies than those obtained by the unrestricted method. The chemical potential as a function of a perpendicular magnetic field is obtained. Signature of an intrinsic spin blockade effect is found.
We investigate the order-by-order convergence behavior of many-body perturbation theory (MBPT) as a simple and efficient tool to approximate the ground-state energy of closed-shell nuclei. To address the convergence properties directly, we explore pe rturbative corrections up to 30th order and highlight the role of the partitioning for convergence. The use of a simple Hartree-Fock solution to construct the unperturbed basis leads to a convergent MBPT series for soft interactions, in contrast to, e.g., a harmonic oscillator basis. For larger model spaces and heavier nuclei, where a direct high-order MBPT calculation in not feasible, we perform third-order calculation and compare to advanced ab initio coupled-cluster calculations for the same interactions and model spaces. We demonstrate that third-order MBPT provides ground-state energies for nuclei up into tin isotopic chain that are in excellent agreement with the best available coupled-cluster results at a fraction of the computational cost.
We study the anisotropic quantum Heisenberg antiferromagnet for spin-1/2 that interpolates smoothly between the one-dimensional (1D) and the two-dimensional (2D) limits. Using the spin Hartree-Fock approach we construct a quantitative theory of heat capacity in the quasi-1D regime with a finite coupling between spin chains. This theory reproduces closely the exact result of Bethe Ansatz in the 1D limit and does not produces any spurious phase transitions for any anisotropy in the quasi-1D regime at finite temperatures in agreement with the Mermin-Wagner theorem. We study the static spin-spin correlation function in order to analyse the interplay of lattice geometry and anisotropy in these systems. We compare the square and triangular lattice. For the latter we find that there is a quantum transition point at an intermediate anisotropy of $sim0.6$. This quantum phase transition establishes that the quasi-1D regime extends upto a particular point in this geometry. For the square lattice the change from the 1D to 2D occurs smoothly as a function of anisotropy, i.e. it is of the crossover type. Comparing the newly developed theory to the available experimental data on the heat capacity of $rm{Cs}_2rm{CuBr}_4$ and $rm{Cs}_2rm{CuCl}_4$ we extract the microscopic constants of the exchange interaction that previously could only be measured using inelastic neutron scattering in high magnetic fields.
We benchmark angular-momentum projected Hartree-Fock calculations as an approximation to full configuration-interaction results in a shell model basis. For such a simple approximation we find reasonably good agreement between excitation spectra, incl uding for many odd-$A$ and odd-odd nuclides. We frequently find shape coexistence, in the form of multiple Hartree-Fock minima, which demonstrably improves the spectrum in the $sd$- and $pf$-shells. The complex spectra of germanium isotopes present a challenge: for even $A$ the spectra are only moderately good and those of odd $A$ bear little resemblance to the configuration-interaction results. Despite this failure we are able to broadly reproduce the odd-even staggering of ground state binding energies, save for germanium isotopes with $N > 40$. To illustrate potential applications, we compute the spectrum of the recently measured dripline nuclide $^{40}$Mg. All in all, projected Hartree-Fock often provides a better description of low-lying nuclear spectra than one might expect. Key to this is the use of gradient descent and unrestricted shapes.
We construct a new mean-field theory for quantum (spin-1/2) Heisenberg antiferromagnet in one (1D) and two (2D) dimensions using a Hartree-Fock decoupling of the four-point correlation functions. We show that the solution to the self-consistency equa tions based on two-point correlation functions does not produce any unphysical finite-temperature phase transition in accord with Mermin-Wagner theorem, unlike the common approach based on the mean-field equation for the order parameter. The next-neighbor spin-spin correlation functions, calculated within this approach, reproduce closely the strong renormalization by quantum fluctuations obtained via Bethe ansatz in 1D and a small renormalization of the classical antiferromagnetic state in 2D. The heat capacity approximates with reasonable accuracy the full Bethe ansatz result at all temperatures in 1D. In 2D, we obtain a reduction of the peak height in the heat capacity at a finite temperature that is accessible by high-order $1/T$ expansions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا