ترغب بنشر مسار تعليمي؟ اضغط هنا

Fractionalization on the surface: Is type-II terminated 1T-TaS$_2$ surface an anomalously realized spin liquid?

229   0   0.0 ( 0 )
 نشر من قبل Gang Chen Professor
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The type-II terminated 1T-TaS$_2$ surface of a three-dimensional 1T-TaS$_2$ bulk material realizes the effective spin-1/2 degree of freedom on each David-star cluster with ${T^2=-1}$ such that the time reversal symmetry is realized anomalously, despite the bulk three-dimensional 1T-TaS$_2$ material has an even number of electrons per unit cell with ${T^2=+1}$. This surface is effectively viewed as a spin-1/2 triangular lattice magnet, except with a symmetry-protected topological bulk. We further propose this surface termination realizes a spinon Fermi surface spin liquid with the surface fractionalization but with a non-exotic three-dimensional bulk. We analyze possible experimental consequences of the type-II terminated surface spin liquid.

قيم البحث

اقرأ أيضاً

The quantum mechanical screening of a spin via conduction electrons depends sensitively on the environment seen by the magnetic impurity. A high degree of responsiveness can be obtained with metal complexes, as the embedding of a metal ion into an or ganic molecule prevents intercalation or alloying and allows for a good control by an appropriate choice of the ligands. There are therefore hopes to reach an on demand control of the spin state of single molecules adsorbed on substrates. Hitherto one route was to rely on switchable molecules with intrinsic bistabilities triggered by external stimuli, such as temperature or light, or on the controlled dosing of chemicals to form reversible bonds. However, these methods constrain the functionality to switchable molecules or depend on access to atoms or molecules. Here, we present a way to induce bistability also in a planar molecule by making use of the environment. We found that the particular habitat offered by an antiphase boundary of the Rashba system BiAg$_2$ stabilizes a second structure for manganese phthalocyanine molecules, in which the central Mn ion moves out of the molecular plane. This corresponds to the formation of a large magnetic moment and a concomitant change of the ground state with respect to the conventional adsorption site. The reversible spin switch found here shows how we can not only rearrange electronic levels or lift orbital degeneracies via the substrate, but even sway the effects of many-body interactions in single molecules by acting on their surrounding.
A quantum spin liquid (QSL) is an exotic state of matter characterized by quantum entanglement and the absence of any broken symmetry. A long-standing open problem, which is a key for fundamental understanding the mysterious QSL states, is how the qu antum fluctuations respond to randomness due to quenched disorder. Transition metal dichalcogenide 1T-TaS$_2$ is a candidate material that hosts a QSL ground state with spin-1/2 on the two-dimensional perfect triangular lattice. Here, we performed systematic studies of low-temperature heat capacity and thermal conductivity on pure, Se-substituted and electron irradiated crystals of 1T-TaS$_2$. In pure 1T-TaS$_2$, the linear temperature term of the heat capacity $gamma T$ and the finite residual linear term of the thermal conductivity in the zero-temperature limit $kappa_{0}/Tequivkappa/T(Trightarrow0)$ are clearly resolved, consistent with the presence of gapless spinons with a Fermi surface. Moreover, while the strong magnetic field slightly enhances $kappa_0/T$, it strongly suppresses $gamma$. These unusual contrasting responses to magnetic field imply the coexistence of two types of gapless excitations with itinerant and localized characters. Introduction of additional weak random exchange disorder in 1T-Ta(S$_{1-x}$Se$_x$)$_2$ leads to vanishing of $kappa_0/T$, indicating that the itinerant gapless excitations are sensitive to the disorder. On the other hand, in both pure and Se-substituted systems, the magnetic contribution of the heat capacity obeys a universal scaling relation, which is consistent with a theory that assumes the presence of localized orphan spins forming random singlets. Electron irradiation in pure 1T-TaS$_2$ largely enhances $gamma$ and changes the scaling function dramatically, suggesting a possible new state of spin liquid.
397 - H. Murayama , Y. Sato , X. Z. Xing 2018
To reveal the nature of elementary excitations in a quantum spin liquid (QSL), we measured low temperature thermal conductivity and specific heat of 1T-TaS$_2$, a QSL candidate material with frustrated triangular lattice of spin-1/2. The nonzero temp erature linear specific heat coefficient $gamma$ and the finite residual linear term of the thermal conductivity in the zero temperature limit $kappa_0/T=kappa/T(Trightarrow 0)$ are clearly resolved. This demonstrates the presence of highly mobile gapless excitations, which is consistent with fractionalized spinon excitations that form a Fermi surface. Remarkably, an external magnetic field strongly suppresses $gamma$, whereas it enhances $kappa_0/T$. This unusual contrasting behavior in the field dependence of specific heat and thermal conductivity can be accounted for by the presence of two types of gapless excitations with itinerant and localized characters, as recently predicted theoretically (I. Kimchi et al., arXiv:1803.00013 (2018)). This unique feature of 1T-TaS$_2$ provides new insights into the influence of quenched disorder on the QSL.
135 - F. Mazzola , V. Sunko , S. Khim 2017
We study the electronic structure of the Pd-terminated surface of the non-magnetic delafossite oxide metal PdCoO$_2$. Combining angle-resolved photoemission spectroscopy and density-functional theory, we show how an electronic reconstruction driven b y surface polarity mediates a Stoner-like magnetic instability towards itinerant surface ferromagnetism. Our results reveal how this leads to a rich multi-band surface electronic structure, and provide spectroscopic evidence for an intriguing sample-dependent coupling of the surface electrons to a bosonic mode which we attribute to electron-magnon interactions. Moreover, we find similar surface state dispersions in PdCrO$_2$, suggesting surface ferromagnetism persists in this sister compound despite its bulk antiferromagnetic order.
Understanding collective electronic states such as superconductivity and charge density waves is pivotal for fundamental science and applications. The layered transition metal dichalcogenide 1T-TiSe2 hosts a unique charge density wave (CDW) phase tra nsition whose origins are still not fully understood. Here, we present ultrafast time- and angle-resolved photoemission spectroscopy (TR-ARPES) measurements complemented by time-resolved reflectivity (TRR) which allows us to establish the contribution of excitonic and electron-phonon interactions to the CDW. We monitor the energy shift of the valence band (VB) and coupling to coherent phonons as a function of laser fluence. The VB shift, directly related to the CDW gap closure, exhibits a markedly slower recovery dynamics at fluences above Fth = 60 microJ cm-2. This observation coincides with a shift in the relative weight of coherently coupled phonons to higher frequency modes in time-resolved reflectivity (TRR), suggesting a phonon bottleneck. Using a rate equation model, the emergence of a high-fluence bottleneck is attributed to an abrupt reduction in coupled phonon damping and an increase in exciton dissociation rate linked to the loss of CDW superlattice phonons. Thus, our work establishes the important role of both excitonic and phononic interactions in the CDW phase transition and the advantage of combining complementary femtosecond techniques to understand the complex interactions in quantum materials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا