ترغب بنشر مسار تعليمي؟ اضغط هنا

يلعب البيتومين دور المغلف و الرابط للحصويات في المجبول البيتوميني، و يتعرض لمجموعة من التغيرات التي تبدأ من مرحلة إنتاج المجبول البيتوميني إلى مرحلة استثماره تحت تأثير الحمولات المرورية و العوامل الجوية. يهدف هذا البحث إلى التحقق من إمكانية استخدام ب وليمير البولي بروبلين لتعديل خواص الرابط البيتوميني و لزيادة مقاومته لدرجات الحرارة المرتفعة و زيادة ممانعته للظروف المناخية المختلفة ، من خلال تعديل عينات البيتومين بإضافة البولي بروبلين بنسب (1 ، 2 ، 3 ، 4 ،6 ، 8 %) ، و من ثم إجراء الاختبارات على عينات البيتومين المعدل و تتضمن الغرز ، الاستطالة ، نقطة التمييع ، و حساب دليل الغرز . و باستخدام فرن الطبقة الرقيقة الدوار RTFOT قمنا بإجراء التقادم قصير الأمد على عينات البيتومين العادي و المعدل و حساب الفاقد بالحرارة و الغرز المتبقي و دليل التقادم ، كما قمنا بإجراء اختبار التركيب المجموعي لتحديد مركبات البيتومين . بينت نتائج الدراسة أن قيم الغرز تميل للانخفاض مع زيادة نسبة الاضافة بينما ترتفع درجة التمييع ، كما بينت النتائج زيادة ممانعة البيتومين المعدل للظروف الحرارية ، و أن النسبة المثالية لإضافة البولي بروبلين تتراوح بين (7 %) حيث يكون عندها دليل التقادم في الحالة الموجبة و الفاقد بالحرارة في أدنى مستوى .
يتناول البحث دراسة تأثير إضافة الألياف البولميرية على خصائص التربة الغضارية المنتفخة . حيث تم دراسة تأثير إضافة الألياف على مقاومة القص للتربة الغضارية و لوحظ زيادة مقاومة القص حتى نسبة محددة من الألياف البولميرية بعدها تقل المقاومة مع زيادة نسبة الألياف المضافة للتربة . نسبة التحسن في المقاومة تراوحت ما بين (100-110)% و تم تحديد النسبة المثالية للألياف البولميرية التي تعطي القيم الأعلى للمقاومات.
تم في هذا العمل تعيين العوامل الحركية لعملية التكسير الحراري و الحفزي لمزيج من البولي إيتلين و البولي بروبلين باستخدام مفاعل مفتوح و بالطريقة السكونية. أجري تفاعل التكسير عند درجات حرارة مختلفة 470,490,510oC و تحت الضغط الجوي, و تم تتبع سير العملية م ن خلال كمية الناتج (قطفة سائلة + غازية) بتابعية الزمن و من ثم رسم منحنيات التفكك الحراري. استخدم في هذا العمل نوعان من المحفزات: محفز زيوليتي طبيعي سوري المنشأ Z و المحفز الثاني15-SO42-/Z هو المحفز الأول بعد تحميله بأيونات الكبريتات بنسبة 15wt% بطريقة النقع. يستغرق تفاعل التكسير الحراري زمنا طويلاً نسبياً و يكون التفاعل من المرتبة الأولى و تزداد سرعة التفاعل بازدياد درجة الحرارة بينما ينخفض زمن التفاعل في التكسير الحفزي بشكل واضح و يكون التفاعل من المرتبة صفر الكاذبة. و تزداد سرعة التفاعل على نحو كبير مقارنة مع التكسير الحراري عند درجة الحرارة نفسها . و كانت قيمة ثابت السرعة عند الدرجة 470oCk1=0.0032g.min-1 للتكسير الحراري لتصبح ko=0.111,g.min-1 للتكسير الحفزي باستخدام المحفزZ و ko=0.206g.min-1 للتكسير الحفزي باستخدام 15-SO42-/Z كمحفز عند نفس درجة الحرارة. كما تنخفض طاقة تنشيط التفاعل من القيمة 208.7kj/mol للتكسير الحراري إلى 116.6kj/mol للتكسير باستخدام المحفز Z و 87.3kj/mol باستخدام المحفز الزيوليتي المحمل بشاردة الكبريتات.
هناك أنواع عديدة من الألياف الصناعية (ألياف البولي بروبيلين – الألياف الزجاجية – بودرة السيليكافيوم- و غيرها) المستخدمة استخداماً واسعاً كإضافات لتحسين مقاومات البيتون. و قد اهتمت العديد من البحوث العلمية الهندسية مؤخراً بالدور الذي تؤديه هذه الألياف في تحسين مقاومات البيتون. لذلك تناولنا في بحثنا هذا دراسة تأثير كل من ألياف البولي بروبيلين و الألياف الفولاذية و بودرة السيلكافيوم في مقاومات البيتون، و ذلك من خلال دراسة تأثيرها في خلطة بيتونية عادية و خلطة بيتونية مع رمل مازار. و تبين من دراسة مقاومات الخلطات مع الألياف تحسن مقاومة البيتون على الشد بنسبة قليلة نسبياً، في حين ارتفعت مقاومة البيتون على الضغط، كما تغير شكل انهيار العينات البيتونية تبعاً لنوع الإضافة المستخدمة مقارنة بكل من البيتون (العادي و مع رمل المزار) دون إضافات، و بالبيتون مع الإضافات موضوع البحث.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا