ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the scattering and localization properties of edge and bulk states in a disordered two-dimensional topological insulator when they coexist at the same fermi energy. Due to edge-bulk backscattering (which is not prohibited emph{a priori } by topology or symmetry), Anderson disorder makes the edge and bulk states localized indistinguishably. Two methods are proposed to effectively decouple them and to restore robust transport. The first kind of decouple is from long range disorder, since edge and bulk states are well separated in $k$ space. The second one is from an edge gating, owing to the edge nature of edge states in real space. The latter can be used to electrically tune a system between an Anderson insulator and a topologically robust conductor, i.e., a realization of a topological transistor.
Algebraic and geometric mean density of states in disordered systems may reveal properties of electronic localization. In order to understand the topological phases with disorder in two dimensions, we present the calculated density of states for diso rdered Bernevig-Hughes-Zhang model. The topological phase is characterized by a perfectly quantized conducting plateau, carried by helical edge states, in a two-terminal setup. In the presence of disorder, the bulk of the topological phase is either a band insulator or an Anderson insulator. Both of them can protect edge states from backscattering. The topological phases are explicitly distinguished as topological band insulator or topological Anderson insulator from the ratio of the algebraic mean density of states to the geometric mean density of states. The calculation reveals that topological Anderson insulator can be induced by disorders from either a topologically trivial band insulator or a topologically nontrivial band insulator.
It has been proposed that disorder may lead to a new type of topological insulator, called topological Anderson insulator (TAI). Here we examine the physical origin of this phenomenon. We calculate the topological invariants and density of states of disordered model in a super-cell of 2-dimensional HgTe/CdTe quantum well. The topologically non-trivial phase is triggered by a band touching as the disorder strength increases. The TAI is protected by a mobility gap, in contrast to the band gap in conventional quantum spin Hall systems. The mobility gap in the TAI consists of a cluster of non-trivial subgaps separated by almost flat and localized bands.
Low energy excitation of surface states of a three-dimensional topological insulator (3DTI) can be described by Dirac fermions. By using a tight-binding model, the transport properties of the surface states in a uniform magnetic field is investigated . It is found that chiral surface states parallel to the magnetic field are responsible to the quantized Hall (QH) conductance $(2n+1)frac{e^2}{h}$ multiplied by the number of Dirac cones. Due to the two-dimension (2D) nature of the surface states, the robustness of the QH conductance against impurity scattering is determined by the oddness and evenness of the Dirac cone number. An experimental setup for transport measurement is proposed.
Using both two orbital and five orbital models, we investigate the quasiparticle interference (QPI) patterns in the superconducting (SC) state of iron-based superconductors. We compare the results for nonmagnetic and magnetic impurities in sign-chang ed s-wave $cos(k_x)cdotcos(k_y)$ and sign-unchanged $|cos(k_x)cdotcos(k_y)|$ SC states. While the patterns strongly depend on the chosen band structures, the sensitivity of peaks around $(pmpi,0)$ and $(0,pmpi)$ wavevectors on magnetic or non-magnetic impurity, and sign change or sign unchanged SC orders is common in two models. Our results strongly suggest that QPI may provide direct information of band structures and evidence of the pairing symmetry in the SC states.
We investigate disordered graphene with strong long-range impurities. Contrary to the common belief that delocalization should persist in such a system against any disorder, as the system is ex-pected to be equivalent to a disordered two-dimensional Dirac Fermionic system, we find that states near the Dirac points are localized for sufficiently strong disorder and the transition between the localized and delocalized states is of Kosterlitz-Thouless type. Our results show that the transition originates from bounding and unbounding of local current vortices.
We investigate the effect of topological defects on the transport properties of a narrow ballistic ribbon of graphene with zigzag edges. Our results show that the longitudinal conductance vanishes at several discrete Fermi energies where the system d evelops loop orbital electric currents with certain chirality. The chirality depends on the direction of the applied bias voltage and the sign of the local curvature created by the topological defects. This novel quantum blockade phenomenon provides a new way to generate a magnetic moment by an external electric field, which can prove useful in carbon electronics.
We investigate the conductivity $sigma$ of graphene nanoribbons with zigzag edges as a function of Fermi energy $E_F$ in the presence of the impurities with different potential range. The dependence of $sigma(E_F)$ displays four different types of be havior, classified to different regimes of length scales decided by the impurity potential range and its density. Particularly, low density of long range impurities results in an extremely low conductance compared to the ballistic value, a linear dependence of $sigma(E_F)$ and a wide dip near the Dirac point, due to the special properties of long range potential and edge states. These behaviors agree well with the results from a recent experiment by Miao emph{et al.} (to appear in Science).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا