ﻻ يوجد ملخص باللغة العربية
Low energy excitation of surface states of a three-dimensional topological insulator (3DTI) can be described by Dirac fermions. By using a tight-binding model, the transport properties of the surface states in a uniform magnetic field is investigated. It is found that chiral surface states parallel to the magnetic field are responsible to the quantized Hall (QH) conductance $(2n+1)frac{e^2}{h}$ multiplied by the number of Dirac cones. Due to the two-dimension (2D) nature of the surface states, the robustness of the QH conductance against impurity scattering is determined by the oddness and evenness of the Dirac cone number. An experimental setup for transport measurement is proposed.
We propose a surface-edge state theory for half quantized Hall conductance of surface states in topological insulators. The gap opening of a single Dirac cone for the surface states in a weak magnetic field is demonstrated. We find a new surface stat
In this work, we propose a ferromagnetic Bi$_2$Se$_3$ as a candidate to hold the coexistence of Weyl- and nodal-line semimetal phases, which breaks the time reversal symmetry. We demonstrate that the type-I Weyl semimetal phase, type-I-, type-II- a
We use the bulk Hamiltonian for a three-dimensional topological insulator such as $rm Bi_2 Se_3$ to study the states which appear on its various surfaces and along the edge between two surfaces. We use both analytical methods based on the surface Ham
The energy spectrum of massless Dirac fermions in graphene under two dimensional periodic magnetic modulation having square lattice symmetry is calculated. We show that the translation symmetry of the problem is similar to that of the Hofstadter or T
The electronic orders in magnetic and dielectric materials form the domains with different signs of order parameters. The control of configuration and motion of the domain walls (DWs) enables gigantic, nonvolatile responses against minute external fi