ﻻ يوجد ملخص باللغة العربية
We investigate disordered graphene with strong long-range impurities. Contrary to the common belief that delocalization should persist in such a system against any disorder, as the system is ex-pected to be equivalent to a disordered two-dimensional Dirac Fermionic system, we find that states near the Dirac points are localized for sufficiently strong disorder and the transition between the localized and delocalized states is of Kosterlitz-Thouless type. Our results show that the transition originates from bounding and unbounding of local current vortices.
We propose a scaling theory for the many-body localization (MBL) phase transition in one dimension, building on the idea that it proceeds via a quantum avalanche. We argue that the critical properties can be captured at a coarse-grained level by a Ko
The Anderson delocalization-localization transition is studied in multilayered systems with randomly placed interlayer bonds of density $p$ and strength $t$. In the absence of diagonal disorder (W=0), following an appropriate perturbation expansion,
Thermal and many-body localized phases are separated by a dynamical phase transition of a new kind. We analyze the distribution of off-diagonal matrix elements of local operators across the many-body localization transition (MBLT) in a disordered spi
The notion of Thouless energy plays a central role in the theory of Anderson localization. We investigate the scaling of Thouless energy across the many-body localization (MBL) transition in a Floquet model. We use a combination of methods that are r
Spectral statistics of disordered systems encode Thouless and Heisenberg time scales whose ratio determines whether the system is chaotic or localized. Identifying similarities between system size and disorder strength scaling of Thouless time for di