ﻻ يوجد ملخص باللغة العربية
We investigate the conductivity $sigma$ of graphene nanoribbons with zigzag edges as a function of Fermi energy $E_F$ in the presence of the impurities with different potential range. The dependence of $sigma(E_F)$ displays four different types of behavior, classified to different regimes of length scales decided by the impurity potential range and its density. Particularly, low density of long range impurities results in an extremely low conductance compared to the ballistic value, a linear dependence of $sigma(E_F)$ and a wide dip near the Dirac point, due to the special properties of long range potential and edge states. These behaviors agree well with the results from a recent experiment by Miao emph{et al.} (to appear in Science).
We investigate the electronic band structure of an undoped graphene armchair nanoribbon. We demonstrate that such nanoribbon always has a gap in its electronic spectrum. Indeed, even in the situations where simple single-electron calculations predict
We study charge transport in one-dimensional graphene superlattices created by applying layered periodic and disordered potentials. It is shown that the transport and spectral properties of such structures are strongly anisotropic. In the direction p
We report measurements of disordered graphene probed by both a high electric field and a high magnetic field. By apply a high source-drain voltage Vsd, we are able to study the current-voltage relation I-Vsd of our device. With increasing Vsd, a cros
Graphene nanoribbons provide an opportunity to integrate phase-coherent transport phenomena with nanoelectromechanical systems (NEMS). Due to the strain induced by a deflection in a graphene nanoribbon resonator, coherent electron transport and mecha
We study two lattice models, the honeycomb lattice (HCL) and a special square lattice (SQL), both reducing to the Dirac equation in the continuum limit. In the presence of disorder (gaussian potential disorder and random vector potential), we investi