ترغب بنشر مسار تعليمي؟ اضغط هنا

We study bond percolation on a one-parameter family of hierarchical small-world network, and find a meta-transition between the inverted BKT transition and the abrupt transition driven by changing the network topology. It is found that the order para meter is continuous and fractal exponent is discontinuous in the inverted BKT transition, and oppositely, the former is discontinuous and the latter is continuous in the abrupt transition. The gaps of the order parameter and fractal exponent in each transition go to vanish as approaching the meta-transition point. This point corresponds to a marginal power-law transition. In the renormalization group formalism, this meta-transition corresponds to the transition between transcritical and saddle-node bifurcations of the fixed point via a pitchfork bifurcation.
We study the Ising model in a hierarchical small-world network by renormalization group analysis, and find a phase transition between an ordered phase and a critical phase, which is driven by the coupling strength of the shortcut edges. Unlike ordina ry phase transitions, which are related to unstable renormalization fixed points (FPs), the singularity in the ordered phase of the present model is governed by the FP that coincides with the stable FP of the ordered phase. The weak stability of the FP yields peculiar criticalities including logarithmic behavior. On the other hand, the critical phase is related to a nontrivial FP, which depends on the coupling strength and is continuously connected to the ordered FP at the transition point. We show that this continuity indicates the existence of a finite correlation-length-like quantity inside the critical phase, which diverges upon approaching the transition point.
We propose a generic scaling theory for critical phenomena that includes power-law and essential singularities in finite and infinite dimensional systems. In addition, we clarify its validity by analyzing the Potts model in a simple hierarchical netw ork, where a saddle-node bifurcation of the renormalization-group fixed point governs the essential singularity.
We examine the effectiveness of assuming an equal probability for states far from equilibrium. For this aim, we propose a method to construct a master equation for extensive variables describing non-stationary nonequilibrium dynamics. The key point o f the method is the assumption that transient states are equivalent to the equilibrium state that has the same extensive variables, i.e., an equal probability holds for microscopic states in nonequilibrium. We demonstrate an application of this method to the critical relaxation of the two-dimensional Potts model by Monte Carlo simulations. While the one-variable description, which is adequate for equilibrium, yields relaxation dynamics that are very fast, redundant two-variable description well reproduces the true dynamics quantitatively. These results suggest that some class of the nonequilibrium state can be described with a small extension of degrees of freedom, which may lead to an alternative way to understand nonequilibrium phenomena.
Evaporation/condensation transition of the Potts model on square lattice is numerically investigated by the Wang-Landau sampling method. Intrinsically system size dependent discrete transition between supersaturation state and phase-separation state is observed in the microcanonical ensemble by changing constrained internal energy. We calculate the microcanonical temperature, as a derivative of microcanonical entropy, and condensation ratio, and perform a finite size scaling of them to indicate clear tendency of numerical data to converge to the infinite size limit predicted by phenomenological theory for the isotherm lattice gas model.
We investigate the ground state of the irrationally frustrated Josephson junction array with controlling anisotropy parameter lambda that is the ratio of the longitudinal Josephson coupling to the transverse one. We find that the ground state has one dimensional periodicity whose reciprocal lattice vector depends on lambda and is incommensurate with the substrate lattice. Approaching the isotropic point, lambda=1 the so called hull function of the ground state exhibits analyticity breaking similar to the Aubry transition in the Frenkel-Kontorova model. We find a scaling law for the harmonic spectrum of the hull functions, which suggests the existence of a characteristic length scale diverging at the isotropic point. This critical behavior is directly connected to the jamming transition previously observed in the current-voltage characteristics by a numerical simulation. On top of the ground state there is a gapless, continuous band of metastable states, which exhibit the same critical behavior as the ground state.
We numerically study the metastable states of the 2d Potts model. Both of equilibrium and relaxation properties are investigated focusing on the finite size effect. The former is investigated by finding the free energy extremal point by the Wang-Land au sampling and the latter is done by observing the Metropolis dynamics after sudden heating. It is explicitly shown that with increasing system size the equilibrium spinodal temperature approaches the bistable temperature in a power-law and the size-dependence of the nucleation dynamics agrees with it. In addition, we perform finite size scaling of the free energy landscape at the bistable point.
We perform Monte-Carlo simulations to study the Bernoulli ($p$) bond percolation on the enhanced binary tree which belongs to the class of nonamenable graphs with one end. Our numerical results show that the system has two different percolation thres holds $p_{c1}$ and $p_{c2}$. All the points in the intermediate phase $(p_{c1} < p < p_{c2})$ are critical and there exist infinitely many infinite clusters in the intermediate phase. In this phase the corresponding fractal exponent continuously increases with $p$ from zero to unity.
We study thermal diffusion dynamics of a single vortex in two dimensional XY model. By numerical simulations we find an abnormal diffusion such that the mobility decreases with time $t$ as $1/ln t$. In addition we construct a one dimensional diffusio n-like equation to model the dynamics and confirm that it conserves quantitative property of the abnormal diffusion. By analyzing the reduced model, we find that the radius of the collectively moving region with the vortex core grows as $R(t) propto t^{1/2}$. This suggests that the mobility of the vortex is described by dynamical correlation length as $1/ln R(t)$.
We study relaxation dynamics of a three dimensional elastic manifold in random potential from a uniform initial condition by numerically solving the Langevin equation.We observe growth of roughness of the system up to larger wavelengths with time.We analyze structure factor in detail and find a compact scaling ansatz describing two distinct time regimes and crossover between them. We find short time regime corresponding to length scale smaller than the Larkin length $L_c$ is well described by the Larkin model which predicts a power law growth of domain size $L(t)$. Longer time behavior exhibits the random manifold regime with slower growth of $L(t)$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا