ترغب بنشر مسار تعليمي؟ اضغط هنا

Static and dynamical aspects of the metastable states of first order transition systems

102   0   0.0 ( 0 )
 نشر من قبل Tomoaki Nogawa
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We numerically study the metastable states of the 2d Potts model. Both of equilibrium and relaxation properties are investigated focusing on the finite size effect. The former is investigated by finding the free energy extremal point by the Wang-Landau sampling and the latter is done by observing the Metropolis dynamics after sudden heating. It is explicitly shown that with increasing system size the equilibrium spinodal temperature approaches the bistable temperature in a power-law and the size-dependence of the nucleation dynamics agrees with it. In addition, we perform finite size scaling of the free energy landscape at the bistable point.



قيم البحث

اقرأ أيضاً

We study the probability distribution $P(X_N=X,N)$ of the total displacement $X_N$ of an $N$-step run and tumble particle on a line, in presence of a constant nonzero drive $E$. While the central limit theorem predicts a standard Gaussian form for $P (X,N)$ near its peak, we show that for large positive and negative $X$, the distribution exhibits anomalous large deviation forms. For large positive $X$, the associated rate function is nonanalytic at a critical value of the scaled distance from the peak where its first derivative is discontinuous. This signals a first-order dynamical phase transition from a homogeneous `fluid phase to a `condensed phase that is dominated by a single large run. A similar first-order transition occurs for negative large fluctuations as well. Numerical simulations are in excellent agreement with our analytical predictions.
We study dipolarly coupled three dimensional spin systems in both the microcanonical and the canonical ensembles by introducing appropriate numerical methods to determine the microcanonical temperature and by realizing a canonical model of heat bath. In the microcanonical ensemble, we show the existence of a branch of stable antiferromagnetic states in the low energy region. Other metastable ferromagnetic states exist in this region: by externally perturbing them, an effective negative specific heat is obtained. In the canonical ensemble, for low temperatures, the same metastable states are unstable and reach a new branch of more robust metastable states which is distinct from the stable one. Our statistical physics approach allows us to put some order in the complex structure of stable and metastable states of dipolar systems.
Dark states are stationary states of a dissipative, Lindblad-type time evolution with zero von Neumann entropy, therefore representing examples of pure, steady quantum states. Non-equilibrium dynamics featuring a dark state recently gained a lot of a ttraction since their implementation in the context of driven-open quantum systems represents a viable possibility to engineer unique, pure states. In this work, we analyze a driven many-body spin system, which undergoes a transition from a dark steady state to a mixed steady state as a function of the driving strength. This transition connects a zero entropy (dark) state with a finite entropy (mixed) state and thus goes beyond the realm of equilibrium statistical mechanics and becomes of genuine nonequilibrium character. We analyze the relevant long wavelength fluctuations driving this transition in a regime where the system performs a discontinuous jump from a dark to a mixed state by means of the renormalization group. This allows us to approach the nonequilibrium dark state transition and identify similarities and clear differences to common, equilibrium phase transitions, and to establish the phenomenology for a first order dark state phase transition.
Using large-scale numerical simulations we studied the kinetics of the 2d q-Potts model for q > 4 after a shallow subcritical quench from a high-temperature homogeneous configuration. This protocol drives the system across a first-order phase transit ion. The initial state is metastable after the quench and, for final temperatures close to the critical one, the system escapes from it via a multi-nucleation process. The ensuing relaxation towards equilibrium proceeds through coarsening with competition between the equivalent ground states. This process has been analyzed for different choices of the parameters such as the number of states and the final quench temperature.
By using worldline and diagrammatic quantum Monte Carlo techniques, matrix product state and a variational approach `a la Feynman, we investigate the equilibrium properties and relaxation features of a quantum system of $N$ spins antiferromagneticall y interacting with each other, with strength $J$, and coupled to a common bath of bosonic oscillators, with strength $alpha$. We show that, in the Ohmic regime, a Beretzinski-Thouless-Kosterlitz quantum phase transition occurs. While for $J=0$ the critical value of $alpha$ decreases asymptotically with $1/N$ by increasing $N$, for nonvanishing $J$ it turns out to be practically independent on $N$, allowing to identify a finite range of values of $alpha$ where spin phase coherence is preserved also for large $N$. Then, by using matrix product state simulations, and the Mori formalism and the variational approach `a la Feynman jointly, we unveil the features of the relaxation, that, in particular, exhibits a non monotonic dependence on the temperature reminiscent of the Kondo effect. For the observed quantum phase transition we also establish a criterion analogous to that of the metal-insulator transition in solids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا