ﻻ يوجد ملخص باللغة العربية
We study thermal diffusion dynamics of a single vortex in two dimensional XY model. By numerical simulations we find an abnormal diffusion such that the mobility decreases with time $t$ as $1/ln t$. In addition we construct a one dimensional diffusion-like equation to model the dynamics and confirm that it conserves quantitative property of the abnormal diffusion. By analyzing the reduced model, we find that the radius of the collectively moving region with the vortex core grows as $R(t) propto t^{1/2}$. This suggests that the mobility of the vortex is described by dynamical correlation length as $1/ln R(t)$.
We calculate the Nernst signal directly in the phenomenological two-dimensional XY model. The obtained numerical results are consistent with the experimental observations in some high-Tc cuprate superconductors qualitatively, where the vortex Nernst
We consider the two-dimensional classical XY model on a square lattice in the thermodynamic limit using tensor renormalization group and precisely determine the critical temperature corresponding to the Berezinskii-Kosterlitz-Thouless (BKT) phase tra
In this Letter we will show that, in the presence of a properly modulated Dzyaloshinskii-Moriya (DM) interaction, a $U(1)$ vortex-antivortex lattice appears at low temperatures for a wide range of the DM interaction. Even more, in the region dominate
Large-scale simulations have been performed on the current-driven two-dimensional XY gauge glass model with resistively-shunted-junction dynamics. It is observed that the linear resistivity at low temperatures tends to zero, providing strong evidence
Disorder induced melting, where the increase in positional entropy created by random pinning sites drives the order-disorder transition in a periodic solid, provides an alternate route to the more conventional thermal melting. Here, using real space