ﻻ يوجد ملخص باللغة العربية
We perform Monte-Carlo simulations to study the Bernoulli ($p$) bond percolation on the enhanced binary tree which belongs to the class of nonamenable graphs with one end. Our numerical results show that the system has two different percolation thresholds $p_{c1}$ and $p_{c2}$. All the points in the intermediate phase $(p_{c1} < p < p_{c2})$ are critical and there exist infinitely many infinite clusters in the intermediate phase. In this phase the corresponding fractal exponent continuously increases with $p$ from zero to unity.
We investigate the scaling of the interfacial adsorption of the two-dimensional Blume-Capel model using Monte Carlo simulations. In particular, we study the finite-size scaling behavior of the interfacial adsorption of the pure model at both its firs
We have used the Monte Carlo (MC) simulation method with Metropolis algorithm to study the finite temperature phase transition properties of a binary alloy spherical nanoparticle with radius $r$ of the type $A_{p}B_{1-p}$. The system consists of two
A two parameter percolation model with nucleation and growth of finite clusters is developed taking the initial seed concentration rho and a growth parameter g as two tunable parameters. Percolation transition is determined by the final static config
Magnetic ordering at low temperature for Ising ferromagnets manifests itself within the associated Fortuin-Kasteleyn (FK) random cluster representation as the occurrence of a single positive density percolating network. In this paper we investigate t
We present Monte Carlo (MC) simulation studies of phase separation in binary (AB) mixtures with bond-disorder that is introduced in two different ways: (i) at randomly selected lattice sites and (ii) at regularly selected sites. The Ising model with