ترغب بنشر مسار تعليمي؟ اضغط هنا

593 - H. Mukuda , F. Engetsu , T. Shiota 2014
We revealed novel phase deagram of Fe-pnictide high-Tc superconductor LaFe(As_{1-x}P_{x})O in wide doping level (0.3<x<1) by P-NMR. Systematic 31P-NMR studies revealed the emergence of the antiferromagnetic ordered phase (AFM-2) in 0.4 < x < 0.7 that intervenes between two superconductivity (SC-1/SC-2) phases. The 31P-NMR Knight shift points to the appearance of the sharp density of states at the Fermi level that is derived from d_{3Z^2?r^2} orbit, which is less relevant with the onset of the SC-2. On the other hand, we remark that the AFM spin fluctuations arising from the interband nesting on the d_{XZ}/d_{YZ} orbits must be a key ingredient for the occurrence of SC around AFM-2.
Systematic P-NMR studies on LaFe(As_{1-x}P_x)(O_{1-y}F_y) with y=0.05 and 0.1 have revealed that the antiferromagnetic spin fluctuations (AFMSFs) at low energies are markedly enhanced around x=0.6 and 0.4, respectively, and as a result, Tc exhibits r espective peaks at 24 K and 27 K against the P-substitution for As. This result demonstrates that the AFMSFs are responsible for the increase in Tc for LaFe(As_{1-x}P_x)(O_{1-y}F_y) as a primary mediator of the Cooper pairing. From a systematic comparison of AFMSFs with a series of (La_{1-z}Y_z)FeAsO_{delta} compounds in which Tc reaches 50 K for z=0.95, we remark that a moderate development of AFMSFs causes the Tc to increase up to 50 K under the condition that the local lattice parameters of FeAs tetrahedron approaches those of the regular tetrahedron. We propose that the T_c of Fe-pnictides exceeding 50 K is maximized under an intimate collaboration of the AFMSFs and other factors originating from the optimization of the local structure.
We report 75As-NMR study on the Fe-pnictide high-Tc superconductor Y0.95La0.05FeAsO_{1-y} (Y0.95La0.051111) with Tc=50 K that includes no magnetic rare-earth elements. The measurement of the nuclear-spin lattice-relaxation rate 75(1/T1) has revealed that the nodeless bulk superconductivity takes place at Tc=50 K while antiferromagnetic spin fluctuations (AFSFs) develop moderately in the normal state. These features are consistently described by the multiple fully-gapped s_pm-wave model based on the Fermi-surface (FS) nesting. Incorporating the theory based on band calculations, we propose that the reason that Tc=50 K in Y0.95La0.051111 is larger than Tc=28 K in La1111 is that the FS multiplicity is maximized, and hence the FS nesting condition is better than that in La1111.
We report an 75As-NMR study on iron (Fe)-based superconductors with thick perovskitetype blocking layers Sr4(Mg0.5-xTi0.5+x)2O6Fe2As2 with x=0 and 0.2. We have found that antiferromagnetic (AFM) order takes place when x=0, and superconductivity (SC) emerges below Tc=36 K when x=0.2. These results reveal that the Fe-pnictides with thick perovskitetype blocks also undergo an evolution from the AFM order to the SC by doping electron carriers into FeAs planes through the chemical substitution of Ti+4 ions for Mg+2 ions, analogous to the F-substitution in LaFeAsO compound. The reason why the Tc=36 K when x=0.2 being higher than the optimally electron-doped LaFeAsO with Tc=27 K relates to the fact that the local tetrahedron structure of FeAs4 is optimized for the onset of SC.
We report 31P-NMR and specific heat measurements on an iron (Fe)-based superconductor SrFe2(As0.65P0.35)2 with Tc=26 K, which have revealed the development of antiferromagnetic correlations in the normal state and the unconventional superconductivity (SC) with nodal gap dominated by the gapless low-lying quasiparticle excitations. The results are consistently argued with an unconventional multiband SC state with the gap-size ratio of different bands being significantly large; the large full gaps in spm-wave state keep Tc high, whereas a small gap with a nodal-structure causes gapless feature under magnetic field. The present results will develop an insight into the strong material dependence of SC-gap structure in Fe-based superconductors.
91 - H. Mukuda , T. Ohara , M. Yashima 2009
We report 29Si-NMR study on a single crystal of the heavy-fermion superconductor CeIrSi3 without an inversion symmetry along the c-axis. The 29Si-Knight shift measurements under pressure have revealed that the spin susceptibility for the ab-plane dec reases slightly below Tc, whereas along the c-axis it does not change at all. The result can be accounted for by the spin susceptibility in the superconducting state being dominated by the strong antisymmetric (Rashba-type) spin-orbit interaction that originates from the absence of an inversion center along the c-axis and it being much larger than superconducting condensation energy. This is the first observation which exhibits an anisotropy of the spin susceptibility below Tc in the noncentrosymmetric superconductor dominated by strong Rashba-type spin-orbit interaction.
We report systematic 57Fe-NMR and 75As-NMR/NQR studies on an underdoped sample (T_c=20 K), an optimally doped sample (T_c=28 K), and an overdoped sample (T_c=22 K) of oxygen-deficient iron (Fe)-based oxypnictide superconductor LaFeAsO_{1-y}$. A micro scopic phase separation between superconducting domains and magnetic domains is shown to take place in the underdoped sample, indicating a local inhomogeneity in association with the density distribution of oxygen deficiencies. As a result, 1/T_1T in the normal state of the superconducting domain decreases significantly upon cooling at both the Fe and As sites regardless of the electron-doping level in LaFeAsO_{1-y}. On the basis of this result, we claim that $1/T_1T$ is not always enhanced by antiferromagnetic fluctuations close to an antiferromagnetic phase in the underdoped superconducting sample. This contrasts with the behavior in hole-doped Ba_{0.6}K_{0.4}Fe2As2(T_c= 38 K), which exhibits a significant increase in $1/T_1T$ upon cooling. We remark that the crucial difference between the normal-state properties of LaFeAsO_{1-y} and Ba_{0.6}K_{0.4}Fe2As2 originates from the fact that the relevant Fermi surface topologies are differently modified depending on whether electrons or holes are doped into the FeAs layers.
We discuss the novel superconducting characteristics and unusual normal-state properties of iron (Fe)-based pnictide superconductors REFeAsO$_{1-y}$ (RE=La,Pr,Nd) and Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$($T_{c}=$ 38 K) by means of $^{57}$Fe-NMR and $^{75} $As-NQR/NMR. In the superconducting state of LaFeAsO$_{0.7}$ ($T_{c}=$ 28 K), the spin component of the $^{57}$Fe-Knight shift decreases to almost zero at low temperatures, which provide firm evidence of the superconducting state formed by spin-singlet Cooper pairing. The nuclear spin-lattice relaxation rates $(1/T_{1})$ in LaFeAsO$_{0.7}$ and Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ exhibit a $T^{3}$-like dependence without a coherence peak just below $T_{c}$, indicating that an unconventional superconducting state is commonly realized in these Fe-based pnictide compounds. All these events below $T_c$ are consistently argued in terms of an extended s$_{pm}$-wave pairing with a sign reversal of the order parameter among Fermi surfaces. In the normal state, $1/T_1T$ decreases remarkably upon cooling for both the Fe and As sites of LaFeAsO$_{0.7}$. In contrast, it gradually increases upon cooling in Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$. Despite the similarity between the superconducting properties of these compounds, a crucial difference was observed in their normal-state properties depending on whether electrons or holes are doped into the FeAs layers. These results may provide some hint to address a possible mechanism of Fe-based pnictide superconductors.
210 - H. Mukuda , S. Nishide , A. Harada 2008
We report on novel superconducting characteristics of the heavy fermion (HF) superconductor CePt3Si without inversion symmetry through 195Pt-NMR study on a single crystal with T_c= 0.46 K that is lower than T_c= 0.75 K for polycrystals. We show that the intrinsic superconducting characteristics inherent to CePt3Si can be understood in terms of the unconventional strong-coupling state with a line-node gap below T_c= 0.46 K. The mystery about the sample dependence of T_c is explained by the fact that more or less polycrystals and single crystals inevitably contain some disordered domains, which exhibit a conventional BCS s-wave superconductivity (SC) below 0.8 K. In contrast, the Neel temperature T_N= 2.2 K is present regardless of the quality of samples, revealing that the Fermi surface responsible for SC differ from that for the antiferromagnetic order. These unusual characteristics of CePt3Si can be also described by a multiband model; in the homogeneous domains, the coherent HF bands are responsible for the unconventional SC, whereas in the disordered domains the conduction bands existing commonly in LaPt3Si may be responsible for the conventional s-wave SC. We remark that some impurity scatterings in the disordered domains break up the 4f-electrons-derived coherent bands but not others. In this context, the small peak in 1/T_1 just below T_c reported in the previous paper (Yogi et al, 2004) is not due to a two-component order parameter composed of spin-singlet and spin-triplet Cooper pairing states, but due to the contamination of the disorder domains which are in the s-wave SC state.
We report $^{57}$Fe-NMR studies on the oxygen-deficient iron (Fe)-based oxypnictide superconductor LaFeAsO$_{0.7}$ ($T_{c}=$ 28 K) enriched by $^{57}$Fe isotope. In the superconducting state, the spin component of $^{57}$Fe-Knight shift $^{57}K$ decr eases almost to zero at low temperatures and the nuclear spin-lattice relaxation rate $^{57}(1/T_{1})$ exhibits a $T^{3}$-like dependence without the coherence peak just below $T_{c}$, which give firm evidence of the unconventional superconducting state formed by spin-singlet Cooper pairing. All these events below $T_c$ are consistently argued in terms of the extended s$_{pm}$-wave pairing with a sign reversal of the order parameter among Fermi surfaces. In the normal state, we found the remarkable decrease of $1/T_1T$ upon cooling for both the Fe and As sites, which originates from the decrease of low-energy spectral weight of spin fluctuations over whole ${bm q}$ space upon cooling below room temperature. Such behavior has never been observed for other strongly correlated superconductors where an antiferromagnetic interaction plays a vital role in mediating the Cooper pairing.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا