ترغب بنشر مسار تعليمي؟ اضغط هنا

Unconventional multiband superconductivity with nodes in single-crystalline SrFe2(As_0.65P_0.35)2 as seen via 31P-NMR and specific heat

75   0   0.0 ( 0 )
 نشر من قبل Hidekazu Mukuda
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report 31P-NMR and specific heat measurements on an iron (Fe)-based superconductor SrFe2(As0.65P0.35)2 with Tc=26 K, which have revealed the development of antiferromagnetic correlations in the normal state and the unconventional superconductivity(SC) with nodal gap dominated by the gapless low-lying quasiparticle excitations. The results are consistently argued with an unconventional multiband SC state with the gap-size ratio of different bands being significantly large; the large full gaps in spm-wave state keep Tc high, whereas a small gap with a nodal-structure causes gapless feature under magnetic field. The present results will develop an insight into the strong material dependence of SC-gap structure in Fe-based superconductors.

قيم البحث

اقرأ أيضاً

Measurements of the London penetration depth and tunneling conductance in single crystals of the recently discovered stoicheometric, iron - based superconductor, CaKFe$_4$As$_4$ (CaK1144) show nodeless, two effective gap superconductivity with a larg er gap of about 6-9 meV and a smaller gap of about 1-4 meV. Having a critical temperature, $T_{c,onset}approx$35.8 K, this material behaves similar to slightly overdoped Ba$_{1-x}$K$_x$)Fe$_2$As$_2$ (e.g. $x=$0.54, $T_c approx$ 34 K)---a known multigap $s_{pm}$ superconductor. We conclude that the superconducting behavior of stoichiometric CaK1144 demonstrates that two-gap $s_{pm}$ superconductivity is an essential property of high temperature superconductivity in iron - based superconductors, independent of the degree of substitutional disorder.
60 - J. Yang , Z. T. Tang , G. H. Cao 2015
We report $^{75}$As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) studies on the superconductor Rb$_{2}$Cr$_{3}$As$_{3}$ with a quasi one-dimensional crystal structure. Below $Tsim$ 100 K, the spin-lattice relaxation rate (1 /$T_{1}$) divided by temperature, 1/$T_{1}T$, increases upon cooling down to $T_{rm c}$ = 4.8 K, showing a Curie-Weiss-like temperature dependence. The Knight shift also increases with decreasing temperature. These results suggest ferromagnetic spin fluctuation. In the superconducting state, 1/$T_{1}$ decreases rapidly below $T_{text{c}}$ without a Hebel-Slichter peak, and follows a $T^5$ variation below $Tsim$ 3 K, which point to unconventional superconductivity with point nodes in the gap function.
The thermal conductivity of the layered s-wave superconductor NbSe_2 was measured down to T_c/100 throughout the vortex state. With increasing field, we identify two regimes: one with localized states at fields very near H_c1 and one with highly delo calized quasiparticle excitations at higher fields. The two associated length scales are most naturally explained as multi-band superconductivity, with distinct small and large superconducting gaps on different sheets of the Fermi surface.
We report a low-temperature specific heat study of high-quality single crystals of the heavily hole doped superconductor Ca$_{0.32}$Na$_{0.68}$Fe$_2$As$_2$. This compound exhibits bulk superconductivity with a transition temperature $T_c approx 34$,K , which is evident from the magnetization, transport, and specific heat measurements. The zero field data manifests a significant electronic specific heat in the normal state with a Sommerfeld coefficient $gamma approx 53$ mJ/mol K$^{2}$. Using a multi-band Eliashberg analysis, we demonstrate that the dependence of the zero field specific heat in the superconducting state is well described by a three-band model with an unconventional s$_pm$ pairing symmetry and gap magnitudes $Delta_i$ of approximately 2.35, 7.48, and -7.50 meV. Our analysis indicates a non-negligible attractive intraband coupling,which contributes significantly to the relatively high value of $T_c$. The Fermi surface averaged repulsive and attractive coupling strengths are of comparable size and outside the strong coupling limit frequently adopted for describing high-$T_c$ iron pnictide superconductors. We further infer a total mass renormalization of the order of five, including the effects of correlations and electron-boson interactions.
We have systematically studied the low-temperature specific heat of the BaFe$_{2-x}$Ni$_x$As$_2$ single crystals covering the whole superconducting dome. Using the nonsuperconducting heavily overdoped x = 0.3 sample as a reference for the phonon cont ribution to the specific heat, we find that the normal-state electronic specific heats in the superconducting samples may have a nonlinear temperature dependence, which challenges previous results in the electron-doped Ba-122 iron-based superconductors. A model based on the presence of ferromagnetic spin fluctuations may explain the data between x = 0.1 and x = 0.15, suggesting the important role of Fermi-surface topology in understanding the normal-state electronic states.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا