ﻻ يوجد ملخص باللغة العربية
Systematic P-NMR studies on LaFe(As_{1-x}P_x)(O_{1-y}F_y) with y=0.05 and 0.1 have revealed that the antiferromagnetic spin fluctuations (AFMSFs) at low energies are markedly enhanced around x=0.6 and 0.4, respectively, and as a result, Tc exhibits respective peaks at 24 K and 27 K against the P-substitution for As. This result demonstrates that the AFMSFs are responsible for the increase in Tc for LaFe(As_{1-x}P_x)(O_{1-y}F_y) as a primary mediator of the Cooper pairing. From a systematic comparison of AFMSFs with a series of (La_{1-z}Y_z)FeAsO_{delta} compounds in which Tc reaches 50 K for z=0.95, we remark that a moderate development of AFMSFs causes the Tc to increase up to 50 K under the condition that the local lattice parameters of FeAs tetrahedron approaches those of the regular tetrahedron. We propose that the T_c of Fe-pnictides exceeding 50 K is maximized under an intimate collaboration of the AFMSFs and other factors originating from the optimization of the local structure.
We report on 31P-NMR studies of LaFe(As_{1-x}P_x)(O_{1-y}F_{y}) over wide compositions for 0<x<1 and 0<y<0.14, which provide clear evidence that antiferromagnetic spin fluctuations (AFMSFs) are one of the indispensable elements for enhancing Tc. Syst
We revealed novel phase deagram of Fe-pnictide high-Tc superconductor LaFe(As_{1-x}P_{x})O in wide doping level (0.3<x<1) by P-NMR. Systematic 31P-NMR studies revealed the emergence of the antiferromagnetic ordered phase (AFM-2) in 0.4 < x < 0.7 that
We report a 29Si-NMR study on the pressure-induced superconductivity (SC) in an antiferromagnetic (AFM) heavy-fermion compound CeIrSi3 without inversion symmetry. In the SC state at P=2.7-2.8 GPa, the temperature dependence of the nuclear-spin lattic
We report magnetic force microscopy (MFM) measurements on underdoped $BaFe_2(As_{1-x}P_x)_2$ ($x=0.26$) that show enhanced superconductivity along stripes parallel to twin boundaries. These stripes of enhanced diamagnetic response repel vortices when
Using the de Haas-van Alphen effect we have measured the evolution of the Fermi surface of BaFe_2(As_{1-x}P_x)_2 as function of isoelectric substitution (As/P) for 0.41<x<1 (T_c up to 25 K). We find that the volume of electron and hole Fermi surfaces