ترغب بنشر مسار تعليمي؟ اضغط هنا

Novel Superconducting Characteristics and Unusual Normal-State Properties in Iron-based Pnictide Superconductors: 57Fe-NMR and 75As-NQR/NMR studies in REFeAsO_1-y (RE=La,Pr,Nd) and Ba0.6K0.4Fe2As2

347   0   0.0 ( 0 )
 نشر من قبل Hidekazu Mukuda
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the novel superconducting characteristics and unusual normal-state properties of iron (Fe)-based pnictide superconductors REFeAsO$_{1-y}$ (RE=La,Pr,Nd) and Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$($T_{c}=$ 38 K) by means of $^{57}$Fe-NMR and $^{75}$As-NQR/NMR. In the superconducting state of LaFeAsO$_{0.7}$ ($T_{c}=$ 28 K), the spin component of the $^{57}$Fe-Knight shift decreases to almost zero at low temperatures, which provide firm evidence of the superconducting state formed by spin-singlet Cooper pairing. The nuclear spin-lattice relaxation rates $(1/T_{1})$ in LaFeAsO$_{0.7}$ and Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ exhibit a $T^{3}$-like dependence without a coherence peak just below $T_{c}$, indicating that an unconventional superconducting state is commonly realized in these Fe-based pnictide compounds. All these events below $T_c$ are consistently argued in terms of an extended s$_{pm}$-wave pairing with a sign reversal of the order parameter among Fermi surfaces. In the normal state, $1/T_1T$ decreases remarkably upon cooling for both the Fe and As sites of LaFeAsO$_{0.7}$. In contrast, it gradually increases upon cooling in Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$. Despite the similarity between the superconducting properties of these compounds, a crucial difference was observed in their normal-state properties depending on whether electrons or holes are doped into the FeAs layers. These results may provide some hint to address a possible mechanism of Fe-based pnictide superconductors.



قيم البحث

اقرأ أيضاً

We report systematic 57Fe-NMR and 75As-NMR/NQR studies on an underdoped sample (T_c=20 K), an optimally doped sample (T_c=28 K), and an overdoped sample (T_c=22 K) of oxygen-deficient iron (Fe)-based oxypnictide superconductor LaFeAsO_{1-y}$. A micro scopic phase separation between superconducting domains and magnetic domains is shown to take place in the underdoped sample, indicating a local inhomogeneity in association with the density distribution of oxygen deficiencies. As a result, 1/T_1T in the normal state of the superconducting domain decreases significantly upon cooling at both the Fe and As sites regardless of the electron-doping level in LaFeAsO_{1-y}. On the basis of this result, we claim that $1/T_1T$ is not always enhanced by antiferromagnetic fluctuations close to an antiferromagnetic phase in the underdoped superconducting sample. This contrasts with the behavior in hole-doped Ba_{0.6}K_{0.4}Fe2As2(T_c= 38 K), which exhibits a significant increase in $1/T_1T$ upon cooling. We remark that the crucial difference between the normal-state properties of LaFeAsO_{1-y} and Ba_{0.6}K_{0.4}Fe2As2 originates from the fact that the relevant Fermi surface topologies are differently modified depending on whether electrons or holes are doped into the FeAs layers.
We report 75As-NQR/NMR studies on the oxygen-deficient iron(Fe)-based oxypnictide superconductors LaFeAsO_{0.6} (T_c=28 K) along with the results on LaFeAsO, LaFeAsO_{0.75}(T_c=20 K) and NdFeAsO_{0.6}(T_c=53 K). Nuclear spin-lattice relaxation rate 1 /T_1 of 75As NQR at zero field on LaFeAsO_{0.6} has revealed a T^3 dependence below T_c upon cooling without the coherence peak just below T_c, evidencing the unconventional superconducting state with the line-node gap. We have found an intimate relationship between the nuclear quadrupole frequencyof 75As and T_c for four samples used in this study. It implies microscopically that the local configuration of Fe and As atoms is significantly related to the T_c of the Fe-oxypnictide superconductors, namely, the T_c can be enhanced up to 50 K when the local configuration of Fe and As atoms is optimal, in which the band structure may be also optimized through the variation of hybridization between As 4p orbitals and Fe 3d orbitals.
We report 139La, 57Fe and 75As nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) measurements on powders of the new LaO1-xFxFeAs superconductor for x = 0 and x = 0.1 at temperatures up to 480 K, and compare our measured NQR spec tra with local density approximation (LDA) calculations. For all three nuclei in the x = 0.1 material, it is found that the local Knight shift increases monotonically with an increase in temperature, and scales with the macroscopic susceptibility, suggesting a single magnetic degree of freedom. Surprisingly, the spin lattice relaxation rates for all nuclei also scale with one another, despite the fact that the form factors for each site sample different regions of q-space. This result suggests a lack of any q-space structure in the dynamical spin susceptibility that might be expected in the presence of antiferromagnetic correlations. Rather, our results are more compatible with simple quasi-particle scattering. Furthermore, we find that the increase in the electric field gradient at the As cannot be accounted for by LDA calculations, suggesting that structural changes, in particular the position of the As in the unit cell, dominate the NQR response.
76 - J. Cui , Q.-P. Ding , W. R. Meier 2017
We report $^{75}$As nuclear magnetic resonance (NMR) studies on a new iron-based superconductor CaKFe$_4$As$_4$ with $T_{rm c}$ = 35 K. $^{75}$As NMR spectra show two distinct lines corresponding to the As(1) and As(2) sites close to the K and Ca lay ers, respectively, revealing that K and Ca layers are well ordered without site
We reexamine the novel phase diagrams of antiferromagnetism (AFM) and high-Tc$ superconductivity (HTSC) for a disorder-free CuO$_2$ plane based on an evaluation of local hole density ($p$) by site-selective Cu-NMR studies on multilayered copper oxide s. Multilayered systems provide us with the opportunity to research the characteristics of the disorder-free CuO$_2$ plane. The site-selective NMR is the best and the only tool used to extract layer-dependent characteristics. Consequently, we have concluded that the uniform mixing of AFM and SC is a general property inherent to a single CuO$_2$ plane in an underdoped regime of HTSC. The $T$=0 phase diagram of AFM constructed here is in quantitative agreement with the theories in a strong correlation regime which is unchanged even with mobile holes. This {it Mott physics} plays a vital role for mediating the Cooper pairs to make $T_c$ of HTSC very high. By contrast, we address from extensive NMR studies on electron-doped iron-oxypnictides La1111 compounds that the increase in $T_c$ is not due to the development of AFM spin fluctuations, but because the structural parameters, such as the bond angle $alpha$ of the FeAs$_4$ tetrahedron and the a-axis length, approach each optimum value. Based on these results, we propose that a stronger correlation in HTSC than in FeAs-based superconductors may make $T_c$ higher significantly.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا