ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin Susceptibility of Noncentrosymmetric Heavy-fermion Superconductor CeIrSi3 under Pressure: 29Si-Knight Shift Study on Single Crystal

92   0   0.0 ( 0 )
 نشر من قبل Hidekazu Mukuda
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report 29Si-NMR study on a single crystal of the heavy-fermion superconductor CeIrSi3 without an inversion symmetry along the c-axis. The 29Si-Knight shift measurements under pressure have revealed that the spin susceptibility for the ab-plane decreases slightly below Tc, whereas along the c-axis it does not change at all. The result can be accounted for by the spin susceptibility in the superconducting state being dominated by the strong antisymmetric (Rashba-type) spin-orbit interaction that originates from the absence of an inversion center along the c-axis and it being much larger than superconducting condensation energy. This is the first observation which exhibits an anisotropy of the spin susceptibility below Tc in the noncentrosymmetric superconductor dominated by strong Rashba-type spin-orbit interaction.

قيم البحث

اقرأ أيضاً

We report the measurements of the $^{29}$Si Knight shift $^{29}K$ on the noncentrosymmetric heavy-fermion compound CePt$_{3}$Si in which antiferromagnetism (AFM) with $T_{rm N}=2.2$ K coexists with superconductivity (SC) with $T_{c}=0.75$ K. Its spin part $^{29}K_{rm s}$, which is deduced to be $K_{rm s}^{c}ge 0.11$ and 0.16% at respective magnetic fields $H=2.0061$ and 0.8671 T, does not decrease across the superconducting transition temperature $T_{c}$ for the field along the c-axis. The temperature dependence of nuclear spin-lattice relaxation of $^{195}$Pt below $T_{c}$ has been accounted for by a Cooper pairing model with a two-component order parameter composed of spin-singlet and spin-triplet pairing components. From this result, it is shown that the Knight-shift data are consistent with the occurrence of the two-component order parameter for CePt$_{3}$Si.
88 - H. Mukuda , T. Fujii , T. Ohara 2008
We report a 29Si-NMR study on the pressure-induced superconductivity (SC) in an antiferromagnetic (AFM) heavy-fermion compound CeIrSi3 without inversion symmetry. In the SC state at P=2.7-2.8 GPa, the temperature dependence of the nuclear-spin lattic e relaxation rate 1/T_1 below Tc exhibits a T^3 behavior without any coherence peak just below Tc, revealing the presence of line nodes in the SC gap. In the normal state, 1/T_1 follows a sqrt{T}-like behavior, suggesting that the SC emerges under the non-Fermi liquid state dominated by AFM spin fluctuations enhanced around quantum critical point (QCP). The reason why the maximum Tc in CeIrSi3 is relatively high among the Ce-based heavy-fermion superconductors may be the existence of the strong AFM spin fluctuations. We discuss the comparison with the other Ce-based heavy-fermion superconductors.
78 - Yoshihiro Aoki 2007
We have investigated the pressure dependence of ac and dc susceptibilities of the heavy-fermion superconductor CePt3Si (Tc= 0.75 K) that coexists with antiferromagnetism (TN = 2.2 K). As hydrostatic pressure is increased, Tc first decreases rapidly, then rather slowly near the critical pressure Pc = 0.6 GPa and shows a stronger decrease again at higher pressures, where Pc is the pressure at which TN becomes zero. A transition width and a difference in the two transition temperatures defined in the form of structures in the out-of-phase component of ac susceptibilities also become small near Pc, indicating that a double transition observed in CePt3Si is caused by some inhomogeneous property in the sample that leads to a spatial variation of local pressure. A sudden increase in the Meissner fraction above Pc suggests the influence of antiferromagnetism on superconductivity.
We report ac susceptibility measurements of polycrystalline CePt_3Si down to 60 mK and in applied fields up to 9 T. In zero field, a full Meissner state emerges at temperatures T/Tc < 0.3, where Tc=0.65 K is the onset transition temperature. Though t ransport measurements show a relatively high upper critical field Bc2 ~ 4-5 T, the low temperature susceptibility, chi, is quite fragile to applied field, with chi diminishing rapidly in fields of a few kG. Interestingly, the field dependence of chi is well described by the power law, 4pichi=(B/B_c)^{1/2}, where Bc is the field at which the onset of resistance is observed in transport measurements.
In the tetragonal heavy fermion system CeCoIn5 the unconventional superconducting state is probed by means of muon spin rotation. The pressure dependence (0-1 GPa) of the basal-plane magnetic penetration depth (lambda_a), the penetration depth anisot ropy (gamma=lambda_c/lambda_a) and the temperature dependence of 1/lambda_i^2 (i=a,c) were studied in single crystals. A strong decrease of lambda_a with pressure was observed, while gamma and lambda_i^2(0)/lambda_i^2(T) are pressure independent. A linear relationship between 1/lambda_a^2(270 mK) and Tc was also found. The large decrease of lambda_a with pressure is the signature of an increase of the number of superconducting quasiparticles by a factor of about 2.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا