ترغب بنشر مسار تعليمي؟ اضغط هنا

We have compared and contrasted magnetic, magnetocaloric and magnetoresistive properties of Gd and Dy members of the rare-earth (R) series RFe5Al7, crystallizing in ThMn12 structure, known to order antiferromagnetically. Among other observations, we would like to emphasize on the following novel findings: (i) There are multiple sign-crossovers in the temperature (T) dependence of isothermal entropy change (DeltaS) in the case of Dy compound; in addition to nil DeltaS at the magnetic compensation point known for two-magnetic-sublattice systems, there is an additional sign-crossover at low temperatures, as though there is a re-entrant inverse magnetocaloric phenomenon. Corresponding sign reversals could also be observed in the magnetoresistance data. (ii) The plots of magnetoresistance versus magnetic field are found to be highly asymmetric with the reversal of the direction of magnetic-field (H) well below TN for both compounds, similar to that known for an antiferromagnetic tunnel junctions. We attribute these to subtle changes in spin orientations of R and Fe moments induced by T and H.
We have recently reported that the Haldane spin-chain system, Er2BaNiO5, undergoing antiferromagnetic order below 32 K, is characterized by the onset of ferroelectricity near 60K due to magnetoelectric coupling induced by short-range magnetic-order w ithin spin-chains. We have carried out additional magnetic and dielectric studies to understand the properties well below antiferromagnetic ordering temperature. We emphasize here on the following: (i) A strong frequency dependent behaviors of ac magnetic susceptibility and complex dielectric properties have been observed at much lower temperatures (below 8 K), that is, reentrant multiglass-like phenomenon, naturally suggesting the existence of an additional transition well below Neel temperature; ii) Magnetoelectric phase coexistence is observed at very low temperature (e.g., T =2K), where the high-field magnetoelectric phase is partially arrested on returning to zero magnetic field after a cycling through metamagnetic transition.
We have investigated the magnetic, dielectric and magnetodielectric (MDE) behavior of a geometrically frustrated spin-chain system, Ca3Co1.4Rh0.6O6, in the single crystalline form for different orientations. The results bring out that the magnetic be havior of this compound is by itself interesting in the sense that this compound exhibits an anisotropic glassy-like magnetic behavior with a huge frequency dependence of ac susceptibility peak for an orientation along the spin-chain in the range 30-60 K; this behavior is robust to applications of large external magnetic fields (H) unlike in canonical spin-glasses. The temperature dependence of dielectric constant also shows strong frequency dependence with similar robustness to H. The isothermal H-dependent dielectric results at low temperatures establishes anisotropic MDE coupling. It is intriguing to note that there is a step roughly at one-third of saturation values as in the case of isothermal magnetization curves for same temperatures (for orientation along spin-chain), a correlation hitherto unrealized for geometrically frustrated systems.
We report that the spin-chain compound Dy2BaNiO5 recently proven to exhibit magnetoelectric coupling below its Neel temperature (T_N) of 58 K, exhibits strong frequency-dependent behavior in ac magnetic susceptibility and complex dielectric propertie s at low temperatures (<10K), mimicking reentrant multiglass phenomenon. Such a behavior is not known among undoped compounds. A new finding in the field of multiferroics is that the characteristic magnetic feature at such low temperatures moves towards higher temperatures in the presence of a magnetic-field (H), whereas the corresponding dielectric feature shifts towards lower temperatures with H, unlike the situation near T_N. This observation indicates that the alignment of spins by external magnetic fields tends to inhibit glassy-like slow electric-dipole dynamics, at least in this system, possibly arising from peculiarities in the magnetic structure.
We present magnetic characterization of a binary rare-earth intermetallic compound Er5Si3, crystallizing in Mn5Si3-type hexagonal structure, through magnetization, heat-capacity, electrical resistivity, and magnetoresistance measurements. Our investi gations confirm that the compound exhibits two magnetic transitions with decreasing temperature, first one at 35 K and the second one at 15 K. The present results reveal that the second magnetic transition is a disorder-broadened first-order transition, as shown by thermal hysteresis in the measured data. Another important finding is that, below 15 K, there is a magnetic-field-induced transition with a hysteretic effect with the electrical resistance getting unusually enhanced at this transition and the magnetorsistance (MR) is found to exhibit intriguing magnetic-field dependence indicating novel magnetic phase-co-existence phenomenon. It thus appears that this compound is characterized by interesting magnetic anomalies in the temperature-magnetic-field phase diagram.
Despite intense research in the field of strongly correlated electron behavior for the past few decades, there has been very little effort to understand this phenomenon in nano particles of the Kondo lattices. In this article, we review the results o f our investigation on the fine particles (less than 1 micron) of some of the alloys obtained by high-energy ball-milling to bring out that this synthetic method paves a way to study strong electron correlations in nanocrystals of such alloys. We primarily focus on the alloys of the series, CeRu(2-x)Rh(x)Si2, lying at different positions in Doniachs magnetic phase diagram. While CeRu2Si2, a bulk paramagnet, appears to become magnetic (of a glassy type) below about 8 K in fine particle form, in CeRh2Si2, an antiferromagnet (T_N= 36 K) in bulk form, magnetism is destroyed (at least down to 0.5 K) in fine particles. In the alloy, CeRu(0.8)Rh(1.2)Si2, at the quantum critical point, no long range magnetic ordering is found
Magnetic-field (H) induced first-order magnetic transition and the assiciated electronic phase-separation phenomena are active topics of research in magnetism. Magnetoresistance (MR) is a key property to probe these phenomena and, in literature, a bu tterfly-shaped MR loop has been noted while cycling the field, with the envelope curve lying below the virgin curve in MR versus H plots of such materials. Here, we report an opposite behavior of MR loop for an alloy, Tb4LuSi3, at low temperatures (<<20 K) in the magnetically ordered state. Such an anomalous curve reveals unexpected domination of higher resistive high-field phase in electronic conduction, unlike in other materials where conducion is naturally by low-resistive high-field phase that follows first-order transition. The observed features reveal an unusual electronic phase separation, namely involving high-resistive high-field phase and low-resistive virgin phase.
The results of magnetization, heat-capacity, and electrical resistivity (rho) studies of the compounds, RMAs2 (R= Pr and Sm; M= Ag, Au), crystallizing in HfCuSi2-derived structure are reported. PrAgAs2 orders antiferromagnetically at T_N= 5 K. The Au analogue, however, does not exhibit long range magnetic order down to 1.8 K. We infer that this is due to subtle differences in their crystallographic features, particularly noting that both the Sm compounds with identical crystal structure as that of former order magnetically nearly at the same temperature (about 17 K). It appears that, in PrAgAs2, SmAgAs2, and SmAuAs2, there is an additional magnetic transition at a lower temperature, as though the similarity in the crystal structure results in similarities in magnetism as well. The rho for PrAgAs2 and PrAuAs2 exhibits negative temperature coefficient in some temperature range in the paramagnetic state. SmAuAs2 exhibits magnetic Brillouin-zone gap effect in rho at T_N, while SmAgAs2 shows a well-defined broad minimum well above T_N around 45 K. Thus, these compounds reveal interesting magnetic and transport properties.
The compound, Tb5Si3, crystallizing in Mn5Si3-type hexagonal structure, was recently reported by us to exhibit a sudden and huge enhancement in electrical resistivity (rho) at a critical magnetic field (H_cr) in the magnetically ordered state (<70 K) tracking isothermal magnetization (M) behavior. We have investigated the influence of external pressure (<15 kbar) and negative chemical pressure induced by Ge substitution for Si on M and rho as a function of temperature (5-300 K) and magnetic field (<120 kOe), with the primary aim of understanding the field-induced anomalies. Focussing on isothermal M and magnetoresistance (MR) at two temperatures, 5 and 20K, we find that this rho anomaly persists under external as well as negative chemical pressures, however with a large change in the H_cr. The pressure-derivative of H_cr is negative and this trend and the MR behavior at the H_cr are comparable to that observed in some Laves phase itinerant magnetic systems. On the basis of this observation, we speculate that the magnetic fluctuations induced at this critical field could be responsible for the MR anomal.ies
The compound, Sr3NiPtO6, belonging to a K4CdCl6-type rhombohedral structure, has been reported not to exhibit magnetic ordering at least down to 1.8 K, despite a relatively large value of paramagnetic Curie temperature. This is attributable to geomet rical frustration. Here we report the results of our efforts to gradually replace Sr by Ba and to probe the influence of positive (external) and negative (chemical) pressure on the magnetic behavior of this compound. In the Ba substituted series, single phase is formed up to x= 1.0 with Ba substituting for Sr. The magnetic properties of the parent compound in the entire temperature range of investigation are not influenced at all in any of the compositions studied as well as under external pressure (investigated up to 10 kbar). Spin-liquid-like heat-capacity behavior (finite linear term) is observed even in Ba substituted specimens. Thus, the magnetic anomalies of this compound are quite robust.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا