ترغب بنشر مسار تعليمي؟ اضغط هنا

Insensitivity of magnetic anomalies in Sr3NiPtO6 to positive and negative pressures

484   0   0.0 ( 0 )
 نشر من قبل E. V. Sampathkumaran
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The compound, Sr3NiPtO6, belonging to a K4CdCl6-type rhombohedral structure, has been reported not to exhibit magnetic ordering at least down to 1.8 K, despite a relatively large value of paramagnetic Curie temperature. This is attributable to geometrical frustration. Here we report the results of our efforts to gradually replace Sr by Ba and to probe the influence of positive (external) and negative (chemical) pressure on the magnetic behavior of this compound. In the Ba substituted series, single phase is formed up to x= 1.0 with Ba substituting for Sr. The magnetic properties of the parent compound in the entire temperature range of investigation are not influenced at all in any of the compositions studied as well as under external pressure (investigated up to 10 kbar). Spin-liquid-like heat-capacity behavior (finite linear term) is observed even in Ba substituted specimens. Thus, the magnetic anomalies of this compound are quite robust.



قيم البحث

اقرأ أيضاً

The results of ac and dc magnetic susceptibility isothermal magnetization and heat-capacity measurements as a function of temperature (T) are reported for Sr3NiRhO6 and Sr3NiPtO6 containing magnetic chains arranged in a triangular fashion in the basa l plane and crystallizing in K4CdCl6-derived rhombohedral structure. The results establish that both the compounds are magnetically frustrated, however in different ways. In the case of the Rh compound, the susceptibility data reveal that there are two magnetic transitions, one in the range 10 -15 K and the other appearing as a smooth crossover near 45 K, with a large frequency dependence of ac susceptibility in the range 10 to 40 K; in addition, the features in C(T) are smeared out at these temperatures. The magnetic properties are comparable to those of previously known few compounds with partially disordered antiferromagnetic structure. On the other hand, for Sr3NiPtO6, there is no evidence for long-range magnetic ordering down to 1.8 K despite large value of paramagnetic Curie temperature.
The competition between magnetic ordering and the Kondo effect in Ce2RhSi3, ordering antiferromagnetically at 7 K, is investigated by the measurements of magnetization, heat capacity and electrical resistivity on the solid solutions, Ce(2-x)La(x)RhSi 3, Ce(2-y)Y(y)RhSi3, and Ce2RhSi(3-z)Ge(z), as well as by high pressure studies on this compound. The trends in the Kondo and Neel temperature variations among these alloys are compared to infer the roles of unit-cell volume and electronic structure changes. On the basis of the results, we infer that this compound lies at the peak of Doniach-magnetic-phase-diagram. The high pressure electrical resistivity data indicate that the quantum critical point for this compound is in the vicinity of 4 GPa.
In order to probe the changes in the valence state and magnetic properties of Eu metal under extreme pressure, x-ray absorption near-edge spectroscopy, x-ray magnetic circular dichroism and synchrotron Mossbauer spectroscopy experiments have been car ried out. The Mossbauer isomer shift exhibits an anomalous pressure dependence, passing through a maximum near 20 GPa. Density functional theory has been applied to give insight into the pressure-induced changes in both Eus electronic structure and Mossbauer isomer shift. Contrary to previous reports, Eu is found to remain nearly divalent to the highest pressures reached (87 GPa) with magnetic order persisting to at least 50 GPa. These results should lead to a better understanding of the nature of the superconducting state found above 75 GPa and of the sequence of structural phase transitions observed to 92 GPa.
The results of magnetic susceptibility, electrical resistivity ($rho$), heat-capacity (C) and thermopower (S) measurements on CeCuAs2, forming in ZrCuSi2-type tetragonal structure, are reported. Our investigations reveal that Ce is trivalent and ther e is no clear evidence for long range magnetic ordering down to 45 mK. The $rho$ behavior is notable in the sense that (i) the temperature (T)-coefficient of $rho$ is negative in the entire range of measurement (45 mK to 300 K) with large values of $rho$, while S behavior is typical of metallic Kondo lattices, and (ii) $rho$ is proportional to T-0.6 at low temperatures, without any influence on the exponent by the application of a magnetic field, which does not seem to classify this compound into hither-to-known non-Fermi liquid (NFL) systems. In contrast to the logarithmic increase known for NFL systems, C/T measured down to 0.5 K exhibits a fall below 2 K. The observed properties of this compound are unusual among Ce systems.
The influence of negative chemical pressure induced by gradual replacement of Ca by Sr as well as of external pressure (up to 10 kbar) on the magnetism of Ca3CoRhO6 has been investigated by magnetization studies. It is found that the solid solution, Ca(3-x)Sr(x)CoRhO6, exists at least till about x= 1.0 without any change in the crystal structure. Apart from insensitivity of the spin-chain feature to volume expansion, the characteristic features of geometrical frustration interestingly appear at the same temperatures for all compositions, in sharp contrast to the response to Y substitution for Ca (reported previously). Interestingly, huge frequency dependence of ac susceptibility known for the parent compound persists for all compositions. We do not find a change in the properties under external pressure. The stability of the magnetic anomalies of this compound to the volume change (about 4%) is puzzling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا