ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic and electrical transport anomalies in RMAs2 (R= Pr and Sm, M= Ag and Au)

110   0   0.0 ( 0 )
 نشر من قبل E. V. Sampathkumaran
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The results of magnetization, heat-capacity, and electrical resistivity (rho) studies of the compounds, RMAs2 (R= Pr and Sm; M= Ag, Au), crystallizing in HfCuSi2-derived structure are reported. PrAgAs2 orders antiferromagnetically at T_N= 5 K. The Au analogue, however, does not exhibit long range magnetic order down to 1.8 K. We infer that this is due to subtle differences in their crystallographic features, particularly noting that both the Sm compounds with identical crystal structure as that of former order magnetically nearly at the same temperature (about 17 K). It appears that, in PrAgAs2, SmAgAs2, and SmAuAs2, there is an additional magnetic transition at a lower temperature, as though the similarity in the crystal structure results in similarities in magnetism as well. The rho for PrAgAs2 and PrAuAs2 exhibits negative temperature coefficient in some temperature range in the paramagnetic state. SmAuAs2 exhibits magnetic Brillouin-zone gap effect in rho at T_N, while SmAgAs2 shows a well-defined broad minimum well above T_N around 45 K. Thus, these compounds reveal interesting magnetic and transport properties.



قيم البحث

اقرأ أيضاً

132 - K. Berggold , T. Lorenz , J. Baier 2005
We have studied the thermal conductivity $kappa$ on single crystalline samples of the antiferromagnetic monolayer cuprates R$_2$CuO$_4$ with R = La, Pr, Nd, Sm, Eu, and Gd. For a heat current within the CuO$_2$ planes, i.e. for $kappa_{ab}$ we find h igh-temperature anomalies around 250 K in all samples. In contrast, the thermal conductivity $kappa_c$ perpendicular to the CuO$_2$ planes, which we measured for R = La, Pr, and Gd, shows a conventional temperature dependence as expected for a purely phononic thermal conductivity. This qualitative anisotropy of $kappa_i$ and the anomalous temperature dependence of $kappa_{ab}$ give evidence for a significant magnetic contribution $kappa_{mag}$ to the heat transport within the CuO$_2$ planes. Our results suggest, that a large magnetic contribution to the heat current is a common feature of single-layer cuprates. We find that $kappa_{mag}$ is hardly affected by structural instabilities, whereas already weak charge carrier doping causes a strong suppression of $kappa_{mag}$.
The results of magnetic susceptibility, electrical resistivity ($rho$), heat-capacity (C) and thermopower (S) measurements on CeCuAs2, forming in ZrCuSi2-type tetragonal structure, are reported. Our investigations reveal that Ce is trivalent and ther e is no clear evidence for long range magnetic ordering down to 45 mK. The $rho$ behavior is notable in the sense that (i) the temperature (T)-coefficient of $rho$ is negative in the entire range of measurement (45 mK to 300 K) with large values of $rho$, while S behavior is typical of metallic Kondo lattices, and (ii) $rho$ is proportional to T-0.6 at low temperatures, without any influence on the exponent by the application of a magnetic field, which does not seem to classify this compound into hither-to-known non-Fermi liquid (NFL) systems. In contrast to the logarithmic increase known for NFL systems, C/T measured down to 0.5 K exhibits a fall below 2 K. The observed properties of this compound are unusual among Ce systems.
We have carried out magnetization, heat capacity, electrical and magnetoresistance measurements (2-300 K) for the polycrystalline form of intermetallic compounds, R2RhSi3 (R= Gd, Tb, and Dy), forming in a AlB2 derived hexagonal structure with a trian gular R network. This work was primarily motivated by a revival of interest on Gd2PdSi3 after about two decades in the field of Toplogical Hall Effect due to magnetic skyrmions. We report here that these compounds are characterized by double antiferromagnetic transitions (T_N= 13.5 and 12 K for Gd, 13.5 and 6.5 K for Tb; 6.5 and 2.5 for Dy), but antiferromagnerism seems to be complex. The most notable observations common to all these compounds are: (i) There are many features in the data mimicking those seen for Gd2PdSi3, including the two field-induced changes in isothermal magnetization as though there are two metamagnetic transitions well below T_N. In view of such a resemblance of the properties, we speculate that these Rh-based materials offer a good playground to study toplogical Hall effect in a centrosymmetric structure, with its origin lying in triangular lattice of magnetic R ions; (ii) There is an increasing contribution of electronic scattering with decreasing temperature towards T_N in all cases, similar to Gd2PdSi3, thereby serving as examples for a theoretical prediction for a classical spin-liquid phase in metallic systems due to geometrical frustration.
We have made a magnetic characterization of Nd0.5Sr0.5MnO3, Nd0.5Ca0.5MnO3, Sm0.5Ca0.5MnO3, Dy0.5Ca0.5MnO3 and Ho0.5Ca0.5MnO3 polycrystalline samples. Ferromagnetic, antiferromagnetic and charge ordering transitions in our samples agree with previous reports. We also report specific heat measurements with applied magnetic fields between 0 and 9 T and temperatures between 2 and 300 K in all cases. Each curve was successfully fitted at high temperatures by an Einstein model with three optical phonon modes. Close to the charge ordering and ferromagnetic transition temperatures the specific heat curves showed peaks superposed to the characteristic response of the lattice oscillations. The entropy variation corresponding to the charge ordering transition was higher than the one corresponding to the ferromagnetic transition. The external magnetic field seems to have no effect in specific heat of the CO phase transition.
The direct correspondence between Co band ferromagnetism and structural parameters is investigated in the pnictide oxides $R$CoPO for different rare-earth ions ($R$ = La, Pr, Nd, Sm) by means of muon-spin spectroscopy and {it ab-initio} calculations, complementing our results published previously [G. Prando {it et al.}, {it Phys. Rev. B} {bf 87}, 064401 (2013)]. Both the transition temperature to the ferromagnetic phase $T_{_{textrm{C}}}$ and the volume of the crystallographic unit cell $V$ are found to be conveniently tuned by the $R$ ionic radius and/or external pressure. A linear correlation between $T_{_{textrm{C}}}$ and $V$ is reported and {it ab-initio} calculations unambiguously demonstrate a full equivalence of chemical and external pressures. As such, $R$ ions are shown to be influencing the ferromagnetic phase only via the induced structural shrinkage without involving any active role from the electronic $f$ degrees of freedom, which are only giving a sizeable magnetic contribution at much lower temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا