ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of pressure on the magnetic behavior and the anomalous magnetoresistance in Tb5Si3

584   0   0.0 ( 0 )
 نشر من قبل E. V. Sampathkumaran
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The compound, Tb5Si3, crystallizing in Mn5Si3-type hexagonal structure, was recently reported by us to exhibit a sudden and huge enhancement in electrical resistivity (rho) at a critical magnetic field (H_cr) in the magnetically ordered state (<70 K) tracking isothermal magnetization (M) behavior. We have investigated the influence of external pressure (<15 kbar) and negative chemical pressure induced by Ge substitution for Si on M and rho as a function of temperature (5-300 K) and magnetic field (<120 kOe), with the primary aim of understanding the field-induced anomalies. Focussing on isothermal M and magnetoresistance (MR) at two temperatures, 5 and 20K, we find that this rho anomaly persists under external as well as negative chemical pressures, however with a large change in the H_cr. The pressure-derivative of H_cr is negative and this trend and the MR behavior at the H_cr are comparable to that observed in some Laves phase itinerant magnetic systems. On the basis of this observation, we speculate that the magnetic fluctuations induced at this critical field could be responsible for the MR anomal.ies



قيم البحث

اقرأ أيضاً

We report the existence of a field-induced ferromagnetic transition in the magnetically ordered state (<69 K) of an intermetallic compound, Tb5Si3, and this transition is distinctly first-order at 1.8 K (near 60 kOe), whereas it appears to become sec ond order near 20 K. The finding we stress is that the electrical resistivity becomes suddenly large in the high-field state after this transition and this is observed in the entire temperature range in the magnetically ordered state. Such an enhancement of positive magnetoresistance (below 100 kOe) at the metamagnetic transition field is unexpected on the basis that the application of magnetic field should favor a low-resistive state due to alignment of spins.
We have compared and contrasted magnetic, magnetocaloric and magnetoresistive properties of Gd and Dy members of the rare-earth (R) series RFe5Al7, crystallizing in ThMn12 structure, known to order antiferromagnetically. Among other observations, we would like to emphasize on the following novel findings: (i) There are multiple sign-crossovers in the temperature (T) dependence of isothermal entropy change (DeltaS) in the case of Dy compound; in addition to nil DeltaS at the magnetic compensation point known for two-magnetic-sublattice systems, there is an additional sign-crossover at low temperatures, as though there is a re-entrant inverse magnetocaloric phenomenon. Corresponding sign reversals could also be observed in the magnetoresistance data. (ii) The plots of magnetoresistance versus magnetic field are found to be highly asymmetric with the reversal of the direction of magnetic-field (H) well below TN for both compounds, similar to that known for an antiferromagnetic tunnel junctions. We attribute these to subtle changes in spin orientations of R and Fe moments induced by T and H.
The competition between magnetic ordering and the Kondo effect in Ce2RhSi3, ordering antiferromagnetically at 7 K, is investigated by the measurements of magnetization, heat capacity and electrical resistivity on the solid solutions, Ce(2-x)La(x)RhSi 3, Ce(2-y)Y(y)RhSi3, and Ce2RhSi(3-z)Ge(z), as well as by high pressure studies on this compound. The trends in the Kondo and Neel temperature variations among these alloys are compared to infer the roles of unit-cell volume and electronic structure changes. On the basis of the results, we infer that this compound lies at the peak of Doniach-magnetic-phase-diagram. The high pressure electrical resistivity data indicate that the quantum critical point for this compound is in the vicinity of 4 GPa.
182 - C. C. Chou , S. Taran , J. L. Her 2010
We report the magnetic field dependent dc magnetization and the pressure-dependent (pmax ~ 16 kbar) ac susceptibilities Xp(T) on both powder and bulk multiferroic BiMnO3 samples, synthesized in different batches under high pressure. A clear ferromagn etic (FM) transition is observed at TC ~ 100 K, and increases with magnetic field. The magnetic hysteresis behavior is similar to that of a soft ferromagnet. Ac susceptibility data indicate that both the FM peak and its temperature (TC) decrease simultaneously with increasing pressure. Interestingly, above a certain pressure (9 ~ 11 kbar), another peak appears at Tp ~ 93 K, which also decreases with increasing pressure, with both these peaks persisting over some intermediate pressure range (9 ~ 13 kbar). The FM peak disappears with further application of pressure; however, the second peak survives until present pressure limit (pmax ~ 16 kbar). These features are considered to originate from the complex interplay of the magnetic and orbital structure of BiMnO3 being affected by pressure.
Recent interest in topological nature in condensed matter physics has revealed the essential role of Berry curvature in anomalous Hall effect (AHE). However, since large Hall response originating from Berry curvature has been reported in quite limite d materials, the detailed mechanism remains unclear at present. Here, we report the discovery of a large AHE triggered by a pressure-induced magnetic phase transition in elemental $alpha$-Mn. The AHE is absent in the non-collinear antiferromagnetic phase at ambient pressure, whereas a large AHE is observed in the weak ferromagnetic phase under high pressure despite the small averaged moment of $sim 0.02 mu_B$/Mn. Our results indicate that the emergence of the AHE in $alpha$-Mn is governed by the symmetry of the underlying magnetic structure, providing a direct evidence of a switch between a zero and non-zero contribution of the Berry curvature across the phase boundary. $alpha$-Mn can be an elemental and tunable platform to reveal the role of Berry curvature in AHE.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا