ترغب بنشر مسار تعليمي؟ اضغط هنا

107 - Yafis Barlas , Emil Prodan 2019
Non-trivial braid-group representations appear as non-Abelian quantum statistics of emergent Majorana zero modes in one and two-dimensional topological superconductors. Here, we generate such representations with topologically protected domain-wall m odes in a classical analogue of the Kitaev superconducting chain, with a particle-hole like symmetry and a Z2 topological invariant. The mid-gap modes are found to exhibit distinct fusion channels and rich non-Abelian braiding properties, which are investigated using a T-junction setup. We employ the adiabatic theorem to explicitly calculate the braiding matrices for one and two pairs of these mid-gap topological defects.
The celebrated phenomenon of quantum Hall effect has recently been generalized from transport of conserved charges to that of other approximately conserved state variables, including spin and valley, which are characterized by spin- or valley-polariz ed boundary states with different chiralities. Here, we report a new class of quantum Hall effect in ABA-stacked graphene trilayers (TLG), the quantum parity Hall (QPH) effect, in which boundary channels are distinguished by even or odd parity under the systems mirror reflection symmetry. At the charge neutrality point and a small perpendicular magnetic field $B_{perp}$, the longitudinal conductance $sigma_{xx}$ is first quantized to $4e^2/h$, establishing the presence of four edge channels. As $B_{perp}$ increases, $sigma_{xx}$ first decreases to $2e^2/h$, indicating spin-polarized counter-propagating edge states, and then to approximately $0$. These behaviors arise from level crossings between even and odd parity bulk Landau levels, driven by exchange interactions with the underlying Fermi sea, which favor an ordinary insulator ground state in the strong $B_{perp}$ limit, and a spin-polarized state at intermediate fields. The transitions between spin-polarized and unpolarized states can be tuned by varying Zeeman energy. Our findings demonstrate a topological phase that is protected by a gate-controllable symmetry and sensitive to Coulomb interactions.
The valley Chern-effect is theoretically demonstrated with a novel alternating current circuitry, where closed-loop LC-resonators sitting at the nodes of a honeycomb lattice are inductively coupled along the bonds. This enables us to generate a dynam ical matrix which copies identically the Hamiltonian driving the electrons in graphene. The valley-Chern effect is generated by splitting the inversion symmetry of the lattice. After a detailed study of the Berry curvature landscape and of the localization of the interface modes, we derive an optimal configuration of the circuit. Furthermore, we show that Q-factors as high as $10^4$ can be achieved with reasonable materials and configurations.
165 - Yafis Barlas , Emil Prodan 2018
Topological condensed matter systems from class A and class AII of the classification table have received classical electromagnetic and mechanical analogs and protected wave-guiding with such systems has been demonstrated experimentally. Here we intr oduce a map which generates classical analogs for all entries of the classification table, using only passive elements. Physical mechanical models are provided for all strong topological phases in dimension 2, as well as for three classes in dimension 3. This includes topological super-conducting phases, which have never been attempted with classical systems.
Half-integer conductance, the signature of Majorana edge modes, has been recently observed in a quantum anomalous Hall insulator/superconductor heterostructure. Here, we analyze a scheme for gate-tunable control of degenerate ground states of Majoran a zero modes (MZM) in thin film topological superconductors. Gating the top surface of a thin film magnetic topological insulator controls the topological phase in the region underneath the gate. The voltage of the transition depends on the gate width, and narrower gates require larger voltages. Relatively long gates are required, on the order of a micron, to prevent hybridization of the end modes and to allow the creation of MZMs at low gate voltages. Applying a voltage to T{shaped and I{shaped gates localizes the Majoranas at their ends. This scheme may provide a facile method for implementing quantum gates for topological quantum computing.
86 - Yafis Barlas 2017
The Landau bands of mirror symmetric 2D Dirac semi-metals (for example odd-layers of ABA-graphene) can be identified by their parity with respect to mirror symmetry. This symmetry facilitates a new class of counter-propagating Hall states at opposite but equal electron and hole filling factors $| u_{pm}|=1/m$ ({it m} odd). Here, we propose a Laughlin-like correlated liquid wavefunction, at the charge neutrality point, that exhibits fractionally charged quasi-particle/hole pair excitation of opposite parity. Using a bosonized one-dimensional edge state theory, we show that the longitudinal conductance of this state, $sigma_{xx} = 2e^2/(m h)$, is robust to short-ranged inter-mode interactions.
Exciton condensation in an electron-hole bilayer system of monolayer transition metal dichalcogenides is analyzed at three different levels of theory to account for screening and quasiparticle renormalization. The large effective masses of the transi tion metal dichalcogenides place them in a strong coupling regime. In this regime, mean field (MF) theory with either an unscreened or screened interlayer interaction predicts a room temperature condensate. Interlayer and intralayer interactions renormalize the quasiparticle dispersion, and this effect is included in a GW approximation. The renormalization reverses the trends predicted from the unscreened or screened MF theories. In the strong coupling regime, intralayer interactions have a large impact on the magnitude of the order parameter and its functional dependencies on effective mass and carrier density.
125 - Bruno Uchoa , , Yafis Barlas 2012
We describe the formation of superconducting states in graphene in the presence of pseudo-Landau levels induced by strain, when time reversal symmetry is preserved. We show that superconductivity in strained graphene is quantum critical when the pseu do-Landau levels are completely filled, whereas at partial fillings superconductivity survives at weak coupling. In the weak coupling limit, the critical temperature scales emph{linearly} with the coupling strength and shows a sequence of quantum critical points as a function of the filling factor that can be accessed experimentally. We argue that superconductivity can be induced by electron-phonon coupling and that the transition temperature can be controlled with the amount of strain and with the filling fraction of the Landau levels.
A brief summary of collective mode excitations that can exist in singlet superconductors with irreducible representation $L$ is given. Such excitations may be classified as the coupled excitations of the charge density $rho$ and the phase $phi $ of t he order parameter, or of the amplitude $Delta$ of order parameter. Each of these classes may be further characterized in the long wavelength limit by the irreducible representation $ell$ of the excitation, which may or may not be the same as the ground state $L$.
The concept of broken symmetry, that the symmetry of the vacuum may be lower than the Hamiltonian of a quantum theory, plays an important role in modern physics. A manifestation of this phenomena is the Higgs boson in particle physics whose long awai ted discovery is imminent. An equivalent mode in superconductors is implicit in the early theories of their collective fluctuations. Spurred by some mysterious experimental results, the theory of the oscillation of the amplitude of superconductivity order parameter, which is the equivalent to the Higgs modes in s-wave superconductors and its identification in the experiments, was explicitly provided. It was also shown that a necessary condition for this to occur is the emergent Lorentz invariance in the superconducting state while the metallic state and the region just below $T_c$ is manifestly non-Lorentz invariant. Here we show that d-wave superconductors, such as the high temperature Cuprate superconductors, should have a rich assortment of Higgs bosons, each in a different irreducible representation of the point-group symmetries of the lattice. We also show that these modes have a characteristic singular spectral structure which can be discovered in Raman scattering experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا