ﻻ يوجد ملخص باللغة العربية
Exciton condensation in an electron-hole bilayer system of monolayer transition metal dichalcogenides is analyzed at three different levels of theory to account for screening and quasiparticle renormalization. The large effective masses of the transition metal dichalcogenides place them in a strong coupling regime. In this regime, mean field (MF) theory with either an unscreened or screened interlayer interaction predicts a room temperature condensate. Interlayer and intralayer interactions renormalize the quasiparticle dispersion, and this effect is included in a GW approximation. The renormalization reverses the trends predicted from the unscreened or screened MF theories. In the strong coupling regime, intralayer interactions have a large impact on the magnitude of the order parameter and its functional dependencies on effective mass and carrier density.
The exceptionally strong Coulomb interaction in semiconducting transition-metal dichalcogenides (TMDs) gives rise to a rich exciton landscape consisting of bright and dark exciton states. At elevated densities, excitons can interact through exciton-e
Due to the Coulomb interaction exciton eignestates in monolayer transitional metal dichalcogenides are coherent superposition of two valleys. The exciton band which couples to the transverse electric mode of light has parabolic dispersion for the cen
The valley degree of freedom is a sought-after quantum number in monolayer transition-metal dichalcogenides. Similar to optical spin orientation in semiconductors, the helicity of absorbed photons can be relayed to the valley (pseudospin) quantum num
Monolayers of transition metal dichalcogenides (TMDs) have a remarkable excitonic landscape with deeply bound bright and dark exciton states. Their properties are strongly affected by lattice distortions that can be created in a controlled way via st
Monolayers of transition metal dichalcogenides (TMDs) have been established in the last years as promising materials for novel optoelectronic devices. However, the performance of such devices is often limited by the dissociation of tightly bound exci