ﻻ يوجد ملخص باللغة العربية
The Landau bands of mirror symmetric 2D Dirac semi-metals (for example odd-layers of ABA-graphene) can be identified by their parity with respect to mirror symmetry. This symmetry facilitates a new class of counter-propagating Hall states at opposite but equal electron and hole filling factors $| u_{pm}|=1/m$ ({it m} odd). Here, we propose a Laughlin-like correlated liquid wavefunction, at the charge neutrality point, that exhibits fractionally charged quasi-particle/hole pair excitation of opposite parity. Using a bosonized one-dimensional edge state theory, we show that the longitudinal conductance of this state, $sigma_{xx} = 2e^2/(m h)$, is robust to short-ranged inter-mode interactions.
New insights into transport properties of nanostructures with a linear dispersion along one direction and a quadratic dispersion along another are obtained by analysing their spectral stability properties under small perturbations. Physically relevan
We study the topologically non-trivial semi-metals by means of the 6-band Kane model. Existence of surface states is explicitly demonstrated by calculating the LDOS on the material surface. In the strain free condition, surface states are divided int
The quantum Hall effect is studied in the topological insulator BiSbTeSe$_2$. By employing top- and back-gate electric fields at high magnetic field, the Landau levels of the Dirac cones in the top and bottom topological surface states can be tuned i
In addition to the well known chiral anomaly, Dirac semimetals have been argued to exhibit mirror anomaly, close analogue to the parity anomaly of ($2+1$)-dimensional massive Dirac fermions. The observable response of such anomaly is manifested in a
We study the interaction effect in a three dimensional Dirac semimetal and find that two competing orders, charge-density-wave orders and nematic orders, can be induced to gap the Dirac points. Applying a magnetic field can further induce an instabil