ترغب بنشر مسار تعليمي؟ اضغط هنا

Gate controlled Majorana Zero Modes on 2D heterostructures

586   0   0.0 ( 0 )
 نشر من قبل Nima Djavid
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Half-integer conductance, the signature of Majorana edge modes, has been recently observed in a quantum anomalous Hall insulator/superconductor heterostructure. Here, we analyze a scheme for gate-tunable control of degenerate ground states of Majorana zero modes (MZM) in thin film topological superconductors. Gating the top surface of a thin film magnetic topological insulator controls the topological phase in the region underneath the gate. The voltage of the transition depends on the gate width, and narrower gates require larger voltages. Relatively long gates are required, on the order of a micron, to prevent hybridization of the end modes and to allow the creation of MZMs at low gate voltages. Applying a voltage to T{shaped and I{shaped gates localizes the Majoranas at their ends. This scheme may provide a facile method for implementing quantum gates for topological quantum computing.

قيم البحث

اقرأ أيضاً

We show that partially separated Andreev bound states (ps-ABSs), comprised of pairs of overlapping Majorana bound states (MBSs) emerging in quantum dot-semiconductor-superconductor heterostructures, produce robust zero bias conductance plateaus in en d-of-wire charge tunneling experiments. These plateaus remain quantized at $2e^2/h$ over large ranges of experimental control parameters. In light of recent experiments reporting the observation of robust $2e^2/h$-quantized conductance plateaus in local charge tunneling experiments, we perform extensive numerical calculations to explicitly show that such quantized conductance plateaus, which are obtained by varying control parameters such as the tunnel barrier height, the super gate potential, and the applied magnetic field, can arise as a result of the existence of ps-ABSs. Because ps-ABSs can form rather generically in the topologically trivial regime, even in the absence of disorder, our results suggest that the observation of a robust quantized conductance plateau does not represent sufficient evidence to demonstrate the existence of non-Abelian topologically-protected Majorana zero modes localized at the opposite ends of a wire.
Realizing topological superconductivity and Majorana zero modes in the laboratory is one of the major goals in condensed matter physics. We review the current status of this rapidly-developing field, focusing on semiconductor-superconductor proposals for topological superconductivity. Material science progress and robust signatures of Majorana zero modes in recent experiments are discussed. After a brief introduction to the subject, we outline several next-generation experiments probing exotic properties of Majorana zero modes, including fusion rules and non-Abelian exchange statistics. Finally, we discuss prospects for implementing Majorana-based topological quantum computation in these systems.
In this work, we demonstrate that making a cut (a narrow vacuum regime) in the bulk of a quantum anomalous Hall insulator (QAHI) creates a topologically protected single helical channel with counter-propagating electron modes, and inducing supercondu ctivity on the helical channel through proximity effect will create Majorana zero energy modes (MZMs) at the ends of the cut. In this geometry, there is no need for the proximity gap to overcome the bulk insulating gap of the QAHI to create MZMs as in the two-dimensional QAHI/superconductor (QAHI/SC) heterostructures. Therefore, the topological regime with MZMs is greatly enlarged. Furthermore, due to the presence of a single helical channel, the generation of low energy in-gap bound states caused by multiple conducting channels is avoided such that the MZMs can be well separated from other in-gap excitations in energy. This simple but practical approach allows the creation of a large number of MZMs in devices with complicated geometry such as hexons for measurement-based topological quantum computation. We further demonstrate how braiding of MZMs can be performed by controlling the coupling strength between the counter-propagating electron modes.
We propose an alternative route to engineer Majorana zero modes (MZMs), which relies on inducing shift or spin vortex defects in magnetic textures which microscopically coexist or are in proximity to a superconductor. The present idea applies to a va riety of superconducting materials and hybrid structures, irrespectively of their spin-singlet, -triplet, or mixed type of pairing, as long as their bulk energy spectrum contains robust point nodes. Our mechanism provides a new framework to understand the recent observations of pairs of MZMs in superconductor - magnetic adatom systems. Moreover, it can inspire the experimental development of new platforms, consisting of nanowires in proximity to conventional superconductors with strong Rashba spin-orbit coupling.
Conductance signatures that signal the presence of Majorana zero modes in a three terminal nanowire-topological superconductor hybrid system are analyzed in detail, in both the clean nanowire limit and in the presence of non-coherent dephasing intera ctions. In the coherent transport regime for a clean wire, we point out contributions of the local Andreev reflection and the non-local transmissions toward the total conductance lineshapes while clarifying the role of contact broadening on the Majorana conductance lineshapes at the magnetic field parity crossings. Interestingly, at larger $B$-field parity crossings, the contribution of the Andreev reflection process decreases which is compensated by the non-local processes in order to maintain the conductance quantum regardless of contact coupling strength. In the non-coherent transport regime, we include dephasing that is introduced by momentum randomization processes, that allows one to smoothly transition to the diffusive limit. Here, as expected, we note that while the Majorana character of the zero modes is unchanged, there is a reduction in the conductance peak magnitude that scales with the strength of the impurity scattering potentials. Important distinctions between the effect of non-coherent dephasing processes and contact-induced tunnel broadenings in the coherent regime on the conductance lineshapes are elucidated. Most importantly our results reveal that the addition of dephasing in the set up does not lead to any notable length dependence to the conductance of the zero modes, contrary to what one would expect in a gradual transition to the diffusive limit. We believe this work paves a way for a systematic introduction of scattering processes into the realistic modeling of Majorana nanowire hybrid devices and assessing topological signatures in such systems in the presence of non-coherent scattering processes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا