ترغب بنشر مسار تعليمي؟ اضغط هنا

216 - Xiao Cui , Wengang Zhou , Yang Hu 2021
Generative adversarial networks have been widely used in image synthesis in recent years and the quality of the generated image has been greatly improved. However, the flexibility to control and decouple facial attributes (e.g., eyes, nose, mouth) is still limited. In this paper, we propose a novel approach, called ChildGAN, to generate a childs image according to the images of parents with heredity prior. The main idea is to disentangle the latent space of a pre-trained generation model and precisely control the face attributes of child images with clear semantics. We use distances between face landmarks as pseudo labels to figure out the most influential semantic vectors of the corresponding face attributes by calculating the gradient of latent vectors to pseudo labels. Furthermore, we disentangle the semantic vectors by weighting irrelevant features and orthogonalizing them with Schmidt Orthogonalization. Finally, we fuse the latent vector of the parents by leveraging the disentangled semantic vectors under the guidance of biological genetic laws. Extensive experiments demonstrate that our approach outperforms the existing methods with encouraging results.
Contrastive learning shows great potential in unpaired image-to-image translation, but sometimes the translated results are in poor quality and the contents are not preserved consistently. In this paper, we uncover that the negative examples play a c ritical role in the performance of contrastive learning for image translation. The negative examples in previous methods are randomly sampled from the patches of different positions in the source image, which are not effective to push the positive examples close to the query examples. To address this issue, we present instance-wise hard Negative Example Generation for Contrastive learning in Unpaired image-to-image Translation (NEGCUT). Specifically, we train a generator to produce negative examples online. The generator is novel from two perspectives: 1) it is instance-wise which means that the generated examples are based on the input image, and 2) it can generate hard negative examples since it is trained with an adversarial loss. With the generator, the performance of unpaired image-to-image translation is significantly improved. Experiments on three benchmark datasets demonstrate that the proposed NEGCUT framework achieves state-of-the-art performance compared to previous methods.
Semi-supervised video object segmentation is a task of segmenting the target object in a video sequence given only a mask annotation in the first frame. The limited information available makes it an extremely challenging task. Most previous best-perf orming methods adopt matching-based transductive reasoning or online inductive learning. Nevertheless, they are either less discriminative for similar instances or insufficient in the utilization of spatio-temporal information. In this work, we propose to integrate transductive and inductive learning into a unified framework to exploit the complementarity between them for accurate and robust video object segmentation. The proposed approach consists of two functional branches. The transduction branch adopts a lightweight transformer architecture to aggregate rich spatio-temporal cues while the induction branch performs online inductive learning to obtain discriminative target information. To bridge these two diverse branches, a two-head label encoder is introduced to learn the suitable target prior for each of them. The generated mask encodings are further forced to be disentangled to better retain their complementarity. Extensive experiments on several prevalent benchmarks show that, without the need of synthetic training data, the proposed approach sets a series of new state-of-the-art records. Code is available at https://github.com/maoyunyao/JOINT.
As an emerging data modal with precise distance sensing, LiDAR point clouds have been placed great expectations on 3D scene understanding. However, point clouds are always sparsely distributed in the 3D space, and with unstructured storage, which mak es it difficult to represent them for effective 3D object detection. To this end, in this work, we regard point clouds as hollow-3D data and propose a new architecture, namely Hallucinated Hollow-3D R-CNN ($text{H}^2$3D R-CNN), to address the problem of 3D object detection. In our approach, we first extract the multi-view features by sequentially projecting the point clouds into the perspective view and the bird-eye view. Then, we hallucinate the 3D representation by a novel bilaterally guided multi-view fusion block. Finally, the 3D objects are detected via a box refinement module with a novel Hierarchical Voxel RoI Pooling operation. The proposed $text{H}^2$3D R-CNN provides a new angle to take full advantage of complementary information in the perspective view and the bird-eye view with an efficient framework. We evaluate our approach on the public KITTI Dataset and Waymo Open Dataset. Extensive experiments demonstrate the superiority of our method over the state-of-the-art algorithms with respect to both effectiveness and efficiency. The code will be made available at url{https://github.com/djiajunustc/H-23D_R-CNN}.
Temporal language grounding (TLG) is a fundamental and challenging problem for vision and language understanding. Existing methods mainly focus on fully supervised setting with temporal boundary labels for training, which, however, suffers expensive cost of annotation. In this work, we are dedicated to weakly supervised TLG, where multiple description sentences are given to an untrimmed video without temporal boundary labels. In this task, it is critical to learn a strong cross-modal semantic alignment between sentence semantics and visual content. To this end, we introduce a novel weakly supervised temporal adjacent network (WSTAN) for temporal language grounding. Specifically, WSTAN learns cross-modal semantic alignment by exploiting temporal adjacent network in a multiple instance learning (MIL) paradigm, with a whole description paragraph as input. Moreover, we integrate a complementary branch into the framework, which explicitly refines the predictions with pseudo supervision from the MIL stage. An additional self-discriminating loss is devised on both the MIL branch and the complementary branch, aiming to enhance semantic discrimination by self-supervising. Extensive experiments are conducted on three widely used benchmark datasets, emph{i.e.}, ActivityNet-Captions, Charades-STA, and DiDeMo, and the results demonstrate the effectiveness of our approach.
Recently, self-supervised learning methods have achieved remarkable success in visual pre-training task. By simply pulling the different augmented views of each image together or other novel mechanisms, they can learn much unsupervised knowledge and significantly improve the transfer performance of pre-training models. However, these works still cannot avoid the representation collapse problem, i.e., they only focus on limited regions or the extracted features on totally different regions inside each image are nearly the same. Generally, this problem makes the pre-training models cannot sufficiently describe the multi-grained information inside images, which further limits the upper bound of their transfer performance. To alleviate this issue, this paper introduces a simple but effective mechanism, called Exploring the Diversity and Invariance in Yourself E-DIY. By simply pushing the most different regions inside each augmented view away, E-DIY can preserve the diversity of extracted region-level features. By pulling the most similar regions from different augmented views of the same image together, E-DIY can ensure the robustness of region-level features. Benefited from the above diversity and invariance exploring mechanism, E-DIY maximally extracts the multi-grained visual information inside each image. Extensive experiments on downstream tasks demonstrate the superiority of our proposed approach, e.g., there are 2.1% improvements compared with the strong baseline BYOL on COCO while fine-tuning Mask R-CNN with the R50-C4 backbone and 1X learning schedule.
Despite existing pioneering works on sign language translation (SLT), there is a non-trivial obstacle, i.e., the limited quantity of parallel sign-text data. To tackle this parallel data bottleneck, we propose a sign back-translation (SignBT) approac h, which incorporates massive spoken language texts into SLT training. With a text-to-gloss translation model, we first back-translate the monolingual text to its gloss sequence. Then, the paired sign sequence is generated by splicing pieces from an estimated gloss-to-sign bank at the feature level. Finally, the synthetic parallel data serves as a strong supplement for the end-to-end training of the encoder-decoder SLT framework. To promote the SLT research, we further contribute CSL-Daily, a large-scale continuous SLT dataset. It provides both spoken language translations and gloss-level annotations. The topic revolves around peoples daily lives (e.g., travel, shopping, medical care), the most likely SLT application scenario. Extensive experimental results and analysis of SLT methods are reported on CSL-Daily. With the proposed sign back-translation method, we obtain a substantial improvement over previous state-of-the-art SLT methods.
In video object tracking, there exist rich temporal contexts among successive frames, which have been largely overlooked in existing trackers. In this work, we bridge the individual video frames and explore the temporal contexts across them via a tra nsformer architecture for robust object tracking. Different from classic usage of the transformer in natural language processing tasks, we separate its encoder and decoder into two parallel branches and carefully design them within the Siamese-like tracking pipelines. The transformer encoder promotes the target templates via attention-based feature reinforcement, which benefits the high-quality tracking model generation. The transformer decoder propagates the tracking cues from previous templates to the current frame, which facilitates the object searching process. Our transformer-assisted tracking framework is neat and trained in an end-to-end manner. With the proposed transformer, a simple Siamese matching approach is able to outperform the current top-performing trackers. By combining our transformer with the recent discriminative tracking pipeline, our method sets several new state-of-the-art records on prevalent tracking benchmarks.
In this paper, we focus on the self-supervised learning of visual correspondence using unlabeled videos in the wild. Our method simultaneously considers intra- and inter-video representation associations for reliable correspondence estimation. The in tra-video learning transforms the image contents across frames within a single video via the frame pair-wise affinity. To obtain the discriminative representation for instance-level separation, we go beyond the intra-video analysis and construct the inter-video affinity to facilitate the contrastive transformation across different videos. By forcing the transformation consistency between intra- and inter-video levels, the fine-grained correspondence associations are well preserved and the instance-level feature discrimination is effectively reinforced. Our simple framework outperforms the recent self-supervised correspondence methods on a range of visual tasks including video object tracking (VOT), video object segmentation (VOS), pose keypoint tracking, etc. It is worth mentioning that our method also surpasses the fully-supervised affinity representation (e.g., ResNet) and performs competitively against the recent fully-supervised algorithms designed for the specific tasks (e.g., VOT and VOS).
The advancement of visual tracking has continuously been brought by deep learning models. Typically, supervised learning is employed to train these models with expensive labeled data. In order to reduce the workload of manual annotations and learn to track arbitrary objects, we propose an unsupervised learning method for visual tracking. The motivation of our unsupervised learning is that a robust tracker should be effective in bidirectional tracking. Specifically, the tracker is able to forward localize a target object in successive frames and backtrace to its initial position in the first frame. Based on such a motivation, in the training process, we measure the consistency between forward and backward trajectories to learn a robust tracker from scratch merely using unlabeled videos. We build our framework on a Siamese correlation filter network, and propose a multi-frame validation scheme and a cost-sensitive loss to facilitate unsupervised learning. Without bells and whistles, the proposed unsupervised tracker achieves the baseline accuracy as classic fully supervised trackers while achieving a real-time speed. Furthermore, our unsupervised framework exhibits a potential in leveraging more unlabeled or weakly labeled data to further improve the tracking accuracy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا