ﻻ يوجد ملخص باللغة العربية
Temporal language grounding (TLG) is a fundamental and challenging problem for vision and language understanding. Existing methods mainly focus on fully supervised setting with temporal boundary labels for training, which, however, suffers expensive cost of annotation. In this work, we are dedicated to weakly supervised TLG, where multiple description sentences are given to an untrimmed video without temporal boundary labels. In this task, it is critical to learn a strong cross-modal semantic alignment between sentence semantics and visual content. To this end, we introduce a novel weakly supervised temporal adjacent network (WSTAN) for temporal language grounding. Specifically, WSTAN learns cross-modal semantic alignment by exploiting temporal adjacent network in a multiple instance learning (MIL) paradigm, with a whole description paragraph as input. Moreover, we integrate a complementary branch into the framework, which explicitly refines the predictions with pseudo supervision from the MIL stage. An additional self-discriminating loss is devised on both the MIL branch and the complementary branch, aiming to enhance semantic discrimination by self-supervising. Extensive experiments are conducted on three widely used benchmark datasets, emph{i.e.}, ActivityNet-Captions, Charades-STA, and DiDeMo, and the results demonstrate the effectiveness of our approach.
Temporal grounding of natural language in untrimmed videos is a fundamental yet challenging multimedia task facilitating cross-media visual content retrieval. We focus on the weakly supervised setting of this task that merely accesses to coarse video
Phrase grounding, the problem of associating image regions to caption words, is a crucial component of vision-language tasks. We show that phrase grounding can be learned by optimizing word-region attention to maximize a lower bound on mutual informa
Grounding textual phrases in visual content is a meaningful yet challenging problem with various potential applications such as image-text inference or text-driven multimedia interaction. Most of the current existing methods adopt the supervised lear
Weakly supervised temporal action localization, which aims at temporally locating action instances in untrimmed videos using only video-level class labels during training, is an important yet challenging problem in video analysis. Many current method
Weakly supervised temporal action localization aims to detect and localize actions in untrimmed videos with only video-level labels during training. However, without frame-level annotations, it is challenging to achieve localization completeness and