ترغب بنشر مسار تعليمي؟ اضغط هنا

Transformer Meets Tracker: Exploiting Temporal Context for Robust Visual Tracking

161   0   0.0 ( 0 )
 نشر من قبل Ning Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

In video object tracking, there exist rich temporal contexts among successive frames, which have been largely overlooked in existing trackers. In this work, we bridge the individual video frames and explore the temporal contexts across them via a transformer architecture for robust object tracking. Different from classic usage of the transformer in natural language processing tasks, we separate its encoder and decoder into two parallel branches and carefully design them within the Siamese-like tracking pipelines. The transformer encoder promotes the target templates via attention-based feature reinforcement, which benefits the high-quality tracking model generation. The transformer decoder propagates the tracking cues from previous templates to the current frame, which facilitates the object searching process. Our transformer-assisted tracking framework is neat and trained in an end-to-end manner. With the proposed transformer, a simple Siamese matching approach is able to outperform the current top-performing trackers. By combining our transformer with the recent discriminative tracking pipeline, our method sets several new state-of-the-art records on prevalent tracking benchmarks.

قيم البحث

اقرأ أيضاً

In this paper, we present a new tracking architecture with an encoder-decoder transformer as the key component. The encoder models the global spatio-temporal feature dependencies between target objects and search regions, while the decoder learns a q uery embedding to predict the spatial positions of the target objects. Our method casts object tracking as a direct bounding box prediction problem, without using any proposals or predefined anchors. With the encoder-decoder transformer, the prediction of objects just uses a simple fully-convolutional network, which estimates the corners of objects directly. The whole method is end-to-end, does not need any postprocessing steps such as cosine window and bounding box smoothing, thus largely simplifying existing tracking pipelines. The proposed tracker achieves state-of-the-art performance on five challenging short-term and long-term benchmarks, while running at real-time speed, being 6x faster than Siam R-CNN. Code and models are open-sourced at https://github.com/researchmm/Stark.
Template-based discriminative trackers are currently the dominant tracking methods due to their robustness and accuracy, and the Siamese-network-based methods that depend on cross-correlation operation between features extracted from template and sea rch images show the state-of-the-art tracking performance. However, general cross-correlation operation can only obtain relationship between local patches in two feature maps. In this paper, we propose a novel tracker network based on a powerful attention mechanism called Transformer encoder-decoder architecture to gain global and rich contextual interdependencies. In this new architecture, features of the template image is processed by a self-attention module in the encoder part to learn strong context information, which is then sent to the decoder part to compute cross-attention with the search image features processed by another self-attention module. In addition, we design the classification and regression heads using the output of Transformer to localize target based on shape-agnostic anchor. We extensively evaluate our tracker TrTr, on VOT2018, VOT2019, OTB-100, UAV, NfS, TrackingNet, and LaSOT benchmarks and our method performs favorably against state-of-the-art algorithms. Training code and pretrained models are available at https://github.com/tongtybj/TrTr.
We focus on grounding (i.e., localizing or linking) referring expressions in images, e.g., ``largest elephant standing behind baby elephant. This is a general yet challenging vision-language task since it does not only require the localization of obj ects, but also the multimodal comprehension of context -- visual attributes (e.g., ``largest, ``baby) and relationships (e.g., ``behind) that help to distinguish the referent from other objects, especially those of the same category. Due to the exponential complexity involved in modeling the context associated with multiple image regions, existing work oversimplifies this task to pairwise region modeling by multiple instance learning. In this paper, we propose a variational Bayesian method, called Variational Context, to solve the problem of complex context modeling in referring expression grounding. Specifically, our framework exploits the reciprocal relation between the referent and context, i.e., either of them influences estimation of the posterior distribution of the other, and thereby the search space of context can be greatly reduced. In addition to reciprocity, our framework considers the semantic information of context, i.e., the referring expression can be reproduced based on the estimated context. We also extend the model to unsupervised setting where no annotation for the referent is available. Extensive experiments on various benchmarks show consistent improvement over state-of-the-art methods in both supervised and unsupervised settings.
140 - Wenhao Li , Hong Liu , Runwei Ding 2021
Despite great progress in 3D human pose estimation from videos, it is still an open problem to take full advantage of redundant 2D pose sequences to learn representative representation for generating one single 3D pose. To this end, we propose an imp roved Transformer-based architecture, called Strided Transformer, for 3D human pose estimation in videos to lift a sequence of 2D joint locations to a 3D pose. Specifically, a vanilla Transformer encoder (VTE) is adopted to model long-range dependencies of 2D pose sequences. To reduce redundancy of the sequence and aggregate information from local context, strided convolutions are incorporated into VTE to progressively reduce the sequence length. The modified VTE is termed as strided Transformer encoder (STE) which is built upon the outputs of VTE. STE not only effectively aggregates long-range information to a single-vector representation in a hierarchical global and local fashion but also significantly reduces the computation cost. Furthermore, a full-to-single supervision scheme is designed at both the full sequence scale and single target frame scale, applied to the outputs of VTE and STE, respectively. This scheme imposes extra temporal smoothness constraints in conjunction with the single target frame supervision and improves the representation ability of features for the target frame. The proposed architecture is evaluated on two challenging benchmark datasets, Human3.6M and HumanEva-I, and achieves state-of-the-art results with much fewer parameters.
This paper improves state-of-the-art visual object trackers that use online adaptation. Our core contribution is an offline meta-learning-based method to adjust the initial deep networks used in online adaptation-based tracking. The meta learning is driven by the goal of deep networks that can quickly be adapted to robustly model a particular target in future frames. Ideally the resulting models focus on features that are useful for future frames, and avoid overfitting to background clutter, small parts of the target, or noise. By enforcing a small number of update iterations during meta-learning, the resulting networks train significantly faster. We demonstrate this approach on top of the high performance tracking approaches: tracking-by-detection based MDNet and the correlation based CREST. Experimental results on standard benchmarks, OTB2015 and VOT2016, show that our meta-learn
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا