ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploring the Diversity and Invariance in Yourself for Visual Pre-Training Task

81   0   0.0 ( 0 )
 نشر من قبل Longhui Wei
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Recently, self-supervised learning methods have achieved remarkable success in visual pre-training task. By simply pulling the different augmented views of each image together or other novel mechanisms, they can learn much unsupervised knowledge and significantly improve the transfer performance of pre-training models. However, these works still cannot avoid the representation collapse problem, i.e., they only focus on limited regions or the extracted features on totally different regions inside each image are nearly the same. Generally, this problem makes the pre-training models cannot sufficiently describe the multi-grained information inside images, which further limits the upper bound of their transfer performance. To alleviate this issue, this paper introduces a simple but effective mechanism, called Exploring the Diversity and Invariance in Yourself E-DIY. By simply pushing the most different regions inside each augmented view away, E-DIY can preserve the diversity of extracted region-level features. By pulling the most similar regions from different augmented views of the same image together, E-DIY can ensure the robustness of region-level features. Benefited from the above diversity and invariance exploring mechanism, E-DIY maximally extracts the multi-grained visual information inside each image. Extensive experiments on downstream tasks demonstrate the superiority of our proposed approach, e.g., there are 2.1% improvements compared with the strong baseline BYOL on COCO while fine-tuning Mask R-CNN with the R50-C4 backbone and 1X learning schedule.

قيم البحث

اقرأ أيضاً

96 - Di Wu , Siyuan Li , Zelin Zang 2021
Self-supervised contrastive learning has demonstrated great potential in learning visual representations. Despite their success on various downstream tasks such as image classification and object detection, self-supervised pre-training for fine-grain ed scenarios is not fully explored. In this paper, we first point out that current contrastive methods are prone to memorizing background/foreground texture and therefore have a limitation in localizing the foreground object. Analysis suggests that learning to extract discriminative texture information and localization are equally crucial for self-supervised pre-training under fine-grained scenarios. Based on our findings, we introduce Cross-view Saliency Alignment (CVSA), a contrastive learning framework that first crops and swaps saliency regions of images as a novel view generation and then guides the model to localize on the foreground object via a cross-view alignment loss. Extensive experiments on four popular fine-grained classification benchmarks show that CVSA significantly improves the learned representation.
131 - Xiaowei Hu , Xi Yin , Kevin Lin 2020
It is highly desirable yet challenging to generate image captions that can describe novel objects which are unseen in caption-labeled training data, a capability that is evaluated in the novel object captioning challenge (nocaps). In this challenge, no additional image-caption training data, other thanCOCO Captions, is allowed for model training. Thus, conventional Vision-Language Pre-training (VLP) methods cannot be applied. This paper presents VIsual VOcabulary pretraining (VIVO) that performs pre-training in the absence of caption annotations. By breaking the dependency of paired image-caption training data in VLP, VIVO can leverage large amounts of paired image-tag data to learn a visual vocabulary. This is done by pre-training a multi-layer Transformer model that learns to align image-level tags with their corresponding image region features. To address the unordered nature of image tags, VIVO uses a Hungarian matching loss with masked tag prediction to conduct pre-training. We validate the effectiveness of VIVO by fine-tuning the pre-trained model for image captioning. In addition, we perform an analysis of the visual-text alignment inferred by our model. The results show that our model can not only generate fluent image captions that describe novel objects, but also identify the locations of these objects. Our single model has achieved new state-of-the-art results on nocaps and surpassed the human CIDEr score.
Due to the severe lack of labeled data, existing methods of medical visual question answering usually rely on transfer learning to obtain effective image feature representation and use cross-modal fusion of visual and linguistic features to achieve q uestion-related answer prediction. These two phases are performed independently and without considering the compatibility and applicability of the pre-trained features for cross-modal fusion. Thus, we reformulate image feature pre-training as a multi-task learning paradigm and witness its extraordinary superiority, forcing it to take into account the applicability of features for the specific image comprehension task. Furthermore, we introduce a cross-modal self-attention~(CMSA) module to selectively capture the long-range contextual relevance for more effective fusion of visual and linguistic features. Experimental results demonstrate that the proposed method outperforms existing state-of-the-art methods. Our code and models are available at https://github.com/haifangong/CMSA-MTPT-4-MedicalVQA.
Self-supervised pre-training (SSP) employs random image transformations to generate training data for visual representation learning. In this paper, we first present a modeling framework that unifies existing SSP methods as learning to predict pseudo -labels. Then, we propose new data augmentation methods of generating training examples whose pseudo-labels are harder to predict than those generated via random image transformations. Specifically, we use adversarial training and CutMix to create hard examples (HEXA) to be used as augmented views for MoCo-v2 and DeepCluster-v2, leading to two variants HEXA_{MoCo} and HEXA_{DCluster}, respectively. In our experiments, we pre-train models on ImageNet and evaluate them on multiple public benchmarks. Our evaluation shows that the two new algorithm variants outperform their original counterparts, and achieve new state-of-the-art on a wide range of tasks where limited task supervision is available for fine-tuning. These results verify that hard examples are instrumental in improving the generalization of the pre-trained models.
Vision-Language Pre-training (VLP) aims to learn multi-modal representations from image-text pairs and serves for downstream vision-language tasks in a fine-tuning fashion. The dominant VLP models adopt a CNN-Transformer architecture, which embeds im ages with a CNN, and then aligns images and text with a Transformer. Visual relationship between visual contents plays an important role in image understanding and is the basic for inter-modal alignment learning. However, CNNs have limitations in visual relation learning due to local receptive fields weakness in modeling long-range dependencies. Thus the two objectives of learning visual relation and inter-modal alignment are encapsulated in the same Transformer network. Such design might restrict the inter-modal alignment learning in the Transformer by ignoring the specialized characteristic of each objective. To tackle this, we propose a fully Transformer visual embedding for VLP to better learn visual relation and further promote inter-modal alignment. Specifically, we propose a metric named Inter-Modality Flow (IMF) to measure the interaction between vision and language modalities (i.e., inter-modality). We also design a novel masking optimization mechanism named Masked Feature Regression (MFR) in Transformer to further promote the inter-modality learning. To the best of our knowledge, this is the first study to explore the benefit of Transformer for visual feature learning in VLP. We verify our method on a wide range of vision-language tasks, including Image-Text Retrieval, Visual Question Answering (VQA), Visual Entailment and Visual Reasoning. Our approach not only outperforms the state-of-the-art VLP performance, but also shows benefits on the IMF metric.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا