ترغب بنشر مسار تعليمي؟ اضغط هنا

We report superconductivity and magnetism in a new family of topological semimetals, the ternary half Heusler compounds $R$PdBi ($R$ : rare earth). In this series, tuning of the rare earth $f$-electron component allows for simultaneous control of bot h lattice density via lanthanide contraction, as well as the strength of magnetic interaction via de Gennes scaling, allowing for a unique tuning of both the normal state band inversion strength, superconducting pairing and magnetically ordered ground states. Antiferromagnetism with ordering vector (0.5,0.5,0.5) occurs below a Neeel temperature that scales with de Gennes factor $dG$, while a superconducting transition is simultaneously linearly suppressed. With superconductivity appearing in a system with non-centrosymmetric crystallographic symmetry, the possibility of spin-triplet Cooper pairing with non-trivial topology analogous to that predicted for the normal state electronic structure provides a unique and rich opportunity to realize both predicted and new exotic excitations in topological materials.
242 - Qing Jie , Rongwei Hu , Emil Bozin 2012
We show that synthesis-induced Metal -Insulator transition (MIT) for electronic transport along the orthorombic c axis of FeSb$_{2}$ single crystals has greatly enhanced electrical conductivity while keeping the thermopower at a relatively high level . By this means, the thermoelectric power factor is enhanced to a new record high S$^{2}$$sigma$ $sim$ 8000 $mu$WK$^{-2}$cm$^{-1}$ at 28 K. We find that the large thermopower in FeSb$_{2}$ can be rationalized within the correlated electron model with two bands having large quasiparaticle disparity, whereas MIT is induced by subtle structural differences. The results in this work testify that correlated electrons can produce extreme power factor values.
In this article we review our studies of the K0.80Fe1.76Se2 superconductor, with an attempt to elucidate the crystal growth details and basic physical properties over a wide range of temperatures and applied magnetic field, including anisotropic magn etic and electrical transport properties, thermodynamic, London penetration depth, magneto-optical imaging and Mossbauer measurements. We find that: (i) Single crystals of similar stoichiometry can be grown both by furnace-cooled and decanted methods; (ii) Single crystalline K0.80Fe1.76Se2 shows moderate anisotropy in both magnetic susceptibility and electrical resistivity and a small modulation of stoichiometry of the crystal, which gives rise to broadened transitions; (iii) The upper critical field, Hc2(T) is ~ 55 T at 2 K for H||c, manifesting a temperature dependent anisotropy that peaks near 3.6 at 27 K and drops to 2.5 by 18 K; (iv) Mossbauer measurements reveal that the iron sublattice in K0.80Fe1.76Se2 clearly exhibits magnetic order, probably of the first order, from well below Tc to its Neel temperature of Tn = 532 +/- 2 K. It is very important to note that, although, at first glance there is an apparent dilemma posed by these data: high Tc superconductivity in a near insulating, large ordered moment material, analysis indicates that the sample may well consist of two phases with the minority superconducting phase (that does not exhibit magnetic order) being finely distributed, but connected with in an antiferromagnetic, poorly conducting, matrix, essentially making a superconducting aerogel.
The upper critical fields, Hc2 of single crystals of Sr1-xEux(Fe0.89Co0.11)2As2(x=0.203 and 0.463) were determined by radio frequency penetration depth measurements in pulsed magnetic fields. Hc2 approaches the Pauli limiting field but shows an upwar d curvature with an enhancement from the orbital limited field as inferred from Werthamer-Helfand-Hohenberg theory. We discuss the temperature dependence of the upper critical fields and the decreasing anisotropy using a two-band BCS model.
Understanding iron based superconductors requires high quality impurity free single crystals. So far they have been elusive for beta-FeSe and extraction of intrinsic materials properties has been compromised by several magnetic impurity phases. Herei n we report synchrotron - clean beta-FeSe superconducting single crystals grown via LiCl/CsCl flux method. Phase purity yields evidence for a defect induced weak ferromagnetism that coexists with superconductivity below Tc. In contrast to Fe1+yTe - based superconductors, our results reveal that the interstitial Fe(2) site is not occupied and that all contribution to density of states at the Fermi level must come from in-plane Fe(1).
243 - W. Z. Hu , G. T. Wang , Rongwei Hu 2008
The electronic structure of Cr$_{1/3}$NbSe$_2$ is studied via optical spectroscopy. We observe two low-energy interband transitions in the paramagnetic phase, which split into four peaks as the compound enters the ferromagnetic state. The band struct ure calculation indicates the four peaks are interband transitions to the spin up Cr e$_g$ states. We show that the peak splitting below the Curie temperature is emph{not} due to the exchange splitting of spin up and down bands, but directly reflects a band broadening effect in Cr-derived states upon the spontaneous ferromagnetic ordering.
We report on a positive colossal magnetoresistance (MR) induced by metallization of FeSb$_{2}$, a nearly magnetic or Kondo semiconductor with 3d ions. We discuss contribution of orbital MR and quantum interference to enhanced magnetic field response of electrical resistivity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا