ترغب بنشر مسار تعليمي؟ اضغط هنا

Electronic thermoelectric power factor and metal-insulator transition in FeSb2

288   0   0.0 ( 0 )
 نشر من قبل Cedomir Petrovic
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that synthesis-induced Metal -Insulator transition (MIT) for electronic transport along the orthorombic c axis of FeSb$_{2}$ single crystals has greatly enhanced electrical conductivity while keeping the thermopower at a relatively high level. By this means, the thermoelectric power factor is enhanced to a new record high S$^{2}$$sigma$ $sim$ 8000 $mu$WK$^{-2}$cm$^{-1}$ at 28 K. We find that the large thermopower in FeSb$_{2}$ can be rationalized within the correlated electron model with two bands having large quasiparaticle disparity, whereas MIT is induced by subtle structural differences. The results in this work testify that correlated electrons can produce extreme power factor values.



قيم البحث

اقرأ أيضاً

99 - C. Petrovic , Y. Lee , T. Vogt 2005
The thermal expansion and heat capacity of FeSb2 at ambient pressure agrees with a picture of a temperature induced spin state transition within the Fe t_{2g} multiplet. However, high pressure powder diffraction data show no sign of a structural phas e transition up to 7GPa. A bulk modulus B=84(3)GPa has been extracted and the temperature dependence of the Gruneisen parameter has been determined. We discuss here the relevance of a Kondo insulator description for this material.
We report the Sr substitution effect in an antiferromagnetic insulator LaMnAsO. The Sr doping limit is $xsim$ 0.10 under the synthesis conditions, as revealed by x-ray diffractions indicate. Upon Sr doping, the room-temperature resistivity drops by f ive orders of magnitude down to $sim$0.01 $Omegacdot$cm, and the temperature dependence of resistivity shows essentially metallic behavior for $xgeq$0.08. Hall and Seebeck measurements confirm consistently that the insulator-to-metal transition is due to hole doping. Strikingly, the room-temperature Seebeck coefficient for the metallic samples is as high as $sim240 mu$V/K, making the system as a possible candidate for thermoelectric applications.
68 - M. K. Hooda , C. S. Yadav 2017
We report the electronic properties of the NdNiO3, prepared at the ambient oxygen pressure condition. The metal-insulator transition temperature is observed at 192 K, but the low temperature state is found to be less insulating compared to the NdNiO3 prepared at high oxygen pressure. The electric resistivity, Seebeck coefficient and thermal conductivity of the compound show large hysteresis below the metal-insulator transition. The large value of the effective mass (m* ~ 8me) in the metallic state indicate the narrow character of the 3d band. The electric conduction at low temperatures (T = 2 - 20 K) is governed by the variable range hopping of the charge carriers.
The metal-insulator transition (MIT) is one of the most dramatic manifestations of electron correlations in materials. Various mechanisms producing MITs have been extensively considered, including the Mott (electron localization via Coulomb repulsion ), Anderson (localization via disorder) and Peierls (localization via distortion of a periodic 1D lattice). One additional route to a MIT proposed by Slater, in which long-range magnetic order in a three dimensional system drives the MIT, has received relatively little attention. Using neutron and X-ray scattering we show that the MIT in NaOsO3 is coincident with the onset of long-range commensurate three dimensional magnetic order. Whilst candidate materials have been suggested, our experimental methodology allows the first definitive demonstration of the long predicted Slater MIT. We discuss our results in the light of recent reports of a Mott spin-orbit insulating state in other 5d oxides.
The pressure-induced insulator to metal transition (IMT) of layered magnetic nickel phosphorous tri-sulfide NiPS3 was studied in-situ under quasi-uniaxial conditions by means of electrical resistance (R) and X-ray diffraction (XRD) measurements. This sluggish transition is shown to occur at 35 GPa. Transport measurements show no evidence of superconductivity to the lowest measured temperature (~ 2 K). The structure results presented here differ from earlier in-situ work that subjected the sample to a different pressure state, suggesting that in NiPS3 the phase stability fields are highly dependent on strain. It is suggested that careful control of the strain is essential when studying the electronic and magnetic properties of layered van der Waals solids.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا