ترغب بنشر مسار تعليمي؟ اضغط هنا

A simple TeV scale model for baryon and lepton number violation is presented, where neutrino mass arises via a one-loop radiative seesaw effect and B-violation obeys $Delta B=2$ selection rule. The stability of proton is connected to the neutrino mas s generation. Matter-antimatter asymmetry is generated in this model via resonant baryogenesis mechanism.
We point out that if neutron--antineutron oscillation is observed in a free neutron oscillation experiment, it will put an upper limit on the strengths of Lorentz invariance violating (LIV) mass operators for neutrons at the level of $10^{-23}$ GeV o r so, which would be the most stringent LIV limit for neutrons. We also study constraints on $Delta B=2$ LIV operators and find that for one particular operator degaussing is not necessary to obtain a visible signal. We also note that observation of $n-bar{n}$ oscillation signal in the nucleon decay search experiment involving nuclei does not lead to any limit on LIV operators since the nuclear potential difference between neutron and antineutrons will mask any Lorentz violating effect.
This article provides a brief overview of some of the theoretical aspects of R-parity violation (RPV) in the minimal supersymmetric standard model (MSSM) and its extensions. Both spontaneous and explicit RPV models are discussed and some consequences are outlined. In particular, it is emphasized that the simplest supersymmetric theories based on local B-L predict that R-parity must be a broken symmetry, a fact which makes a compelling case for taking R-parity breaking seriously in discussions of supersymmetry phenomenology.
The hypothetical massive dark photon ($gamma$) which has kinetic mixing with the SM photon can decay electromagnetically to $e^+e^-$ pairs if its mass $m$ exceeds $2m_e$ and otherwise into three SM photons. These decays yield cosmological and superno vae associated signatures. We briefly discuss these signatures, particularly in connection with the supernova SN1987A and delineate the extra constraints that may then arise on the mass and mixing parameter of the dark photon. In particular, we find that for dark photon mass $m_{gamma}$ in the 5-20 MeV range, arguments based on supernova 1987A observations lead to a bound on $epsilon$ which is about 300 times stronger than the presently existing bounds based on energy loss arguments.
The Baryon-Lepton difference ($B-L$) is increasingly emerging as a possible new symmetry of the weak interactions of quarks and leptons as a way to understand the small neutrino masses. There is the possibility that current and future searches at col liders and in low energy rare processes may provide evidence for this symmetry. This paper provides a brief overview of the early developments that led to B-L as a possible symmetry beyond the standard model, and also discusses some recent developments.
We show that discovery of baryon number violation in two processes with at least one obeying the selection rule Delta (B-L) = pm 2 can determine the Majorana character of neutrinos. Thus observing p to e^+ pi^0 and n to e^- pi^0 decays, or p to e^+ p i^0 and n-nbar oscillations, or n to e^- pi^+ and n-nbar oscillations would establish that neutrinos are Majorana particles. We discuss this in a model-independent effective operator approach.
We present a simple model for a 7 keV scalar dark matter particle which also explains the recently reported anomalous peak in the galactic X-ray spectrum at 3.55 keV in terms of its two photon decay. The model is arguably the simplest extension of th e Standard Model, with the addition of a real scalar gauge singlet field subject to a reflection symmetry. This symmetry breaks spontaneously at an energy scale of a few MeV which triggers the decay of the dark matter particle into two photons. In this framework, the Higgs boson of the Standard Model is also the source of dark matter in the Universe. The model fits the relic dark matter abundance and the partial lifetime for two photon decay, while being consistent with constraints from domain wall formation and dark matter self-interactions. We show that all these features of the model are preserved in its natural embedding into a simple dark $U(1)$ gauge theory with a Higgs mechanism. The properties of the dark photon get determined in such a scenario. High precision cosmological measurements can potentially test these models, as there are residual effects from domain wall formation and non-negligible self-interactions of dark matter.
We discuss the issue of vacuum stability of standard model by embedding it within the TeV scale left-right universal seesaw model (called SLRM in the text). This model has only two coupling parameters $(lambda_1, lambda_2)$ in the Higgs potential and only two physical neutral Higgs bosons $(h, H)$. We explore the range of values for $(lambda_1, lambda_2)$ for which the light Higgs boson mass $M_h=126$ GeV and the vacuum is stable for all values of the Higgs fields. Combining with the further requirement that the scalar self couplings remain perturbative till typical GUT scales of order $10^{16}$ GeV, we find (i) an upper and lower limit on the second Higgs $(H)$ mass to be within the range: $0.4 leq frac{M_H}{v_R}leq 0.7$, where the $v_R$ is the parity breaking scale and (ii) that the heavy vector-like top, bottom and $tau$ partner fermions ($P_3, N_3, E_3$) mass have an upper bound $M_{P_3, N_3, E_3} leq v_R$. We discuss some phenomenological aspects of the model pertaining to LHC.
In a class of extensions of the minimal supersymmetric standard model with (B-L)/left-right symmetry that explains the neutrino masses, breaking R-parity symmetry is an essential and dynamical requirement for successful gauge symmetry breaking. Two c onsequences of these models are: (i) a new kind of R-parity breaking interaction that protects proton stability but adds new contributions to neutrinoless double beta decay and (ii) an upper bound on the extra gauge and parity symmetry breaking scale which is within the large hadron collider (LHC) energy range. We point out that an important prediction of such theories is a potentially large mixing between the right-handed charged lepton ($e^c$) and the superpartner of the right-handed gauge boson ($widetilde W_R^+$), which leads to a brand new class of R-parity violating interactions of type $widetilde{mu^c}^dagger u_mu^c e^c$ and $widetilde{d^c}^daggeru^c e^c$. We analyze the relevant constraints on the sparticle mass spectrum and the LHC signatures for the case with smuon/stau NLSP and gravitino LSP. We note the smoking gun signals for such models to be lepton flavor/number violating processes: $ppto mu^pmmu^pm e^+e^-jj$ (or $tau^pmtau^pm e^+e^-jj$) and $pptomu^pm e^pm b bar{b} jj$ (or $tau^pm e^pm b bar{b} jj$) without significant missing energy. The predicted multi-lepton final states and the flavor structure make the model be distinguishable even in the early running of the LHC.
In a recent paper, four of the present authors proposed a class of dark matter models where generalized parity symmetry leads to equality of dark matter abundance with baryon asymmetry of the Universe and predicts dark matter mass to be around 5 GeV. In this note we explore how this model can be tested in direct search experiments. In particular, we point out that if the dark matter happens to be the mirror neutron, the direct detection cross section has the unique feature that it increases at low recoil energy unlike the case of conventional WIMPs. It is also interesting to note that the predicted spin-dependent scattering could make significant contribution to the total direct detection rate, especially for light nucleus. With this scenario, one could explain recent DAMA and CoGeNT results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا