ترغب بنشر مسار تعليمي؟ اضغط هنا

Supernova Bounds on the Dark Photon Using its Electromagnetic Decay

168   0   0.0 ( 0 )
 نشر من قبل Yongchao Zhang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The hypothetical massive dark photon ($gamma$) which has kinetic mixing with the SM photon can decay electromagnetically to $e^+e^-$ pairs if its mass $m$ exceeds $2m_e$ and otherwise into three SM photons. These decays yield cosmological and supernovae associated signatures. We briefly discuss these signatures, particularly in connection with the supernova SN1987A and delineate the extra constraints that may then arise on the mass and mixing parameter of the dark photon. In particular, we find that for dark photon mass $m_{gamma}$ in the 5-20 MeV range, arguments based on supernova 1987A observations lead to a bound on $epsilon$ which is about 300 times stronger than the presently existing bounds based on energy loss arguments.

قيم البحث

اقرأ أيضاً

The observation of the cosmic 21-cm spectrum can serve as a probe for Dark Matter properties. We point out that the knowledge of the signal amplitude at a given redshift allows one to put conservative bounds on the DM decay rate which are independent of astrophysical parameters. These limits are valid for the vast majority of DM models, those without extra IGM cooling or additional background radiation. Using the experimental results reported by the EDGES collaboration, we derive bounds that are stronger than the ones derived from other CMB observations and competitive with the ones from indirect detection.
We investigate different neutrino signals from the decay of dark matter particles to determine the prospects for their detection, and more specifically if any spectral signature can be disentangled from the background in present and future neutrino o bservatories. If detected, such a signal could bring an independent confirmation of the dark matter interpretation of the dramatic rise in the positron fraction above 10 GeV recently observed by the PAMELA satellite experiment and offer the possibility of distinguishing between astrophysical sources and dark matter decay or annihilation. In combination with other signals, it may also be possible to distinguish among different dark matter decay channels.
We set conservative, robust constraints on the annihilation and decay of dark matter into various Standard Model final states under various assumptions about the distribution of the dark matter in the Milky Way halo. We use the inclusive photon spect rum observed by the Fermi Gamma-ray Space Telescope through its main instrument, the Large-Area Telescope (LAT). We use simulated data to first find the optimal regions of interest in the gamma-ray sky, where the expected dark matter signal is largest compared with the expected astrophysical foregrounds. We then require the predicted dark matter signal to be less than the observed photon counts in the a priori optimal regions. This yields a very conservative constraint as we do not attempt to model or subtract astrophysical foregrounds. The resulting limits are competitive with other existing limits, and, for some final states with cuspy dark-matter distributions in the Galactic Center region, disfavor the typical cross section required during freeze-out for a weakly interacting massive particle (WIMP) to obtain the observed relic abundance.
A portion of light scalar dark matter, especially axions, may organize into gravitationally bound clumps (stars) and be present in large number in the galaxy today. It is therefore of utmost interest to determine if there are novel observational sign atures of this scenario. Work has shown that for moderately large axion-photon couplings, such clumps can undergo parametric resonance into photons, for clumps above a critical mass $M^{star}_c$ determined precisely by some of us in Ref. [1]. In order to obtain a clump above the critical mass in the galaxy today would require mergers. In this work we perform full 3-dimensional simulations of pairs of axion clumps and determine the conditions under which mergers take place through the emission of scalar waves, including analyzing head-on and non-head-on collisions, phase dependence, and relative velocities. Consistent with other work in the literature, we find that the final mass from the merger $M^{star}_{text{final}}approx 0.7(M^{star}_1+M^{star}_2)$ is larger than each of the original clump masses (for $M^{star}_1sim M^{star}_2$). Hence, it is possible for sub-critical mass clumps to merge and become super-critical and therefore undergo parametric resonance into photons. We find that mergers are expected to be kinematically allowed in the galaxy today for high Peccei-Quinn scales, which is strongly suggested by unification ideas, although the collision rate is small. While mergers can happen for axions with lower Peccei-Quinn scales due to statistical fluctuations in relative velocities, as they have a high collision rate. We estimate the collision and merger rates within the Milky Way galaxy today. We find that a merger leads to a flux of energy on earth that can be appreciable and we mention observational search strategies.
Dark photons are massive abelian gauge bosons that interact with ordinary photons via a kinetic mixing with the hypercharge field strength tensor. This theory is probed by a variety of different experiments and limits are set on a combination of the dark photon mass and kinetic mixing parameter. These limits can however be strongly modified by the presence of additional heavy degrees of freedom. Using the framework of dark effective field theory, we study how robust are the current experimental bounds when these new states are present. We focus in particular on the possible existence of a dark dipole interaction between the Standard Model leptons and the dark photon. We show that the presence of a dark dipole modifies existing supernov{ae} bounds for cut-off scales up to $mathcal{O}(10 - 100~text{TeV})$. On the other hand, terrestrial experiments, such as LSND and E137, can probe cut-off scales up to $mathcal{O}(3~text{TeV})$. For the latter experiment we highlight that the bound extends down to vanishing kinetic mixing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا