ترغب بنشر مسار تعليمي؟ اضغط هنا

TeV Scale Universal Seesaw, Vacuum Stability and Heavy Higgs

142   0   0.0 ( 0 )
 نشر من قبل Yongchao Zhang
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We discuss the issue of vacuum stability of standard model by embedding it within the TeV scale left-right universal seesaw model (called SLRM in the text). This model has only two coupling parameters $(lambda_1, lambda_2)$ in the Higgs potential and only two physical neutral Higgs bosons $(h, H)$. We explore the range of values for $(lambda_1, lambda_2)$ for which the light Higgs boson mass $M_h=126$ GeV and the vacuum is stable for all values of the Higgs fields. Combining with the further requirement that the scalar self couplings remain perturbative till typical GUT scales of order $10^{16}$ GeV, we find (i) an upper and lower limit on the second Higgs $(H)$ mass to be within the range: $0.4 leq frac{M_H}{v_R}leq 0.7$, where the $v_R$ is the parity breaking scale and (ii) that the heavy vector-like top, bottom and $tau$ partner fermions ($P_3, N_3, E_3$) mass have an upper bound $M_{P_3, N_3, E_3} leq v_R$. We discuss some phenomenological aspects of the model pertaining to LHC.

قيم البحث

اقرأ أيضاً

We consider singlet extensions of the standard model, both in the fermion and the scalar sector, to account for the generation of neutrino mass at the TeV scale and the existence of dark matter respectively. For the neutrino sector we consider models with extra singlet fermions which can generate neutrino mass via the so called inverse or linear seesaw mechanism whereas a singlet scalar is introduced as the candidate for dark matter. We show that although these two sectors are disconnected at low energy, the coupling constants of both the sectors get correlated at high energy scale by the constraints coming from the perturbativity and stability/metastability of the electroweak vacuum. The singlet fermions try to destabilize the electroweak vacuum while the singlet scalar aids the stability. As an upshot, the electroweak vacuum may attain absolute stability even upto the Planck scale for suitable values of the parameters. We delineate the parameter space for the singlet fermion and the scalar couplings for which the electroweak vacuum remains stable/metastable and at the same time giving the correct relic density and neutrino masses and mixing angles as observed.
We consider the introduction of a complex scalar field carrying a global lepton number charge to the Standard Model and the Higgs inflation framework. The conditions are investigated under which this model can simultaneously ensure Higgs vacuum stabi lity up to the Planck scale, successful inflation, non-thermal Leptogenesis via the pendulum mechanism, and light neutrino masses. These can be simultaneously achieved when the scalar lepton is minimally coupled to gravity, that is, when standard Higgs inflation and reheating proceed without the interference of the additional scalar degrees of freedom. If the scalar lepton also has a non-minimal coupling to gravity, a multi-field inflation scenario is induced, with interesting interplay between the successful inflation constraints and those from vacuum stability and Leptogenesis. The parameter region that can simultaneously achieve the above goals is explored.
We consider the extension of the Standard Model (SM) with an inert Higgs doublet that also contains two or three sets of $SU(2)_L$ triplet fermions with hypercharge zero and analyze the stability of electroweak vacuum for the scenarios. The model rep resents a Type-III inverse seesaw mechanism for neutrino mass generation with a Dark matter candidate.An effective potential approach calculation with two-loop beta function have been carried out in deciding the fate of the electroweak vacuum. Weak gauge coupling $g_2$ shows a different behaviour as compared to the Standard Model. The modified running of $g_2$, along with the Higgs quartic coupling and Type-III Yukawa couplings become crucial in determining the stability of electroweak vacuum. The interplay between two and three generations of such triplet fermions reveals that extensions with two generations is favoured if we aspire for Planck scale stability. Bounds on the Higgs quartic couplings, Type-III Yukawa and number of triplet fermion generations are drawn for different mass scale of Type-III fermions. The phenomenologies of inert doublet and Type-III fermions at the LHC and other experiments are commented upon.
Current Higgs data at the Large Hadron Collider is compatible with a SM signal at the 2$sigma$ level, but the central value of the signal strength in the diphoton channel is enhanced with respect to the SM expectation. If the enhancement resides in t he diphoton partial decay width, the data could be accommodated in the Minimally Supersymmetric Standard Model (MSSM) with highly mixed light staus. We revisit the issue of vacuum instability induced by large mixing in the stau sector, including effects of a radiatively-corrected tau Yukawa coupling. Further, we emphasize the importance of taking into account the $tanbeta$ dependence in the stability bound. While the metastability of the Universe constrains the possible enhancement in the Higgs to diphoton decay width in the light stau scenario, an increase of the order of 50% can be achieved in the region of large $tanbeta$. Larger enhancements may be obtained, but would require values of $tanbeta$ associated with non-perturbative values of the tau Yukawa coupling at scales below the GUT scale, thereby implying the presence of new physics beyond the MSSM.
In a novel standard model extension it has been suggested that, even in the absence of right-handed neutrinos and type-I seesaw, purely triplet leptogenesis leading to baryon asymmetry of the universe can be realised by two heavy Higgs triplets which also provide type-II seesaw ansatz for neutrino masses. In this work we discuss this model for hierarchical neutrino masses in concordance with recently determined cosmologocal bounds and oscillation data including $theta_{23}$ in the second octant and large Dirac CP phases. We also address the issues on dark matter and vacuum stability of the scalar potential in a minimal extension of this model. We find that for both normal and inverted orderings the model fits the oscillation data with the sum of the three neutrino masses consistent with cosmological bounds determined from Planck satellite data. In addition using this model ansatz for CP-asymmetry and solutions of Boltzmann equations, we also show how successful prediction of baryon asymmetry emerges in the cases of both unflavoured and two-flavoured leptogeneses. With additional $Z_2$ discrete symmetry, a minimal extension of this model is shown to be capable of predicting a scalar singlet WIMP dark matter in agreement with direct and indirect observations. Whereas in the original model, the renormalization group running of the scalar potential renders it negatve leading to vacuum instability, the presence of the dark matter in the minimally extended model ensures stability. Although the combined constraints due to relic density and direct detection cross section allow this scalar singlet dark matter mass to be $m_{xi}=750$ GeV, the additional vacuum stability constraint pushes this limiting value to $m_{xi}=1.3$ TeV which is verifiable by ongoing experiments. We also dicuss constraint on the model parameters for the radiative stability of the standard Higgs mass.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا