ترغب بنشر مسار تعليمي؟ اضغط هنا

Supersymmetry and R-parity: an Overview

171   0   0.0 ( 0 )
 نشر من قبل Rabindra N. Mohapatra
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This article provides a brief overview of some of the theoretical aspects of R-parity violation (RPV) in the minimal supersymmetric standard model (MSSM) and its extensions. Both spontaneous and explicit RPV models are discussed and some consequences are outlined. In particular, it is emphasized that the simplest supersymmetric theories based on local B-L predict that R-parity must be a broken symmetry, a fact which makes a compelling case for taking R-parity breaking seriously in discussions of supersymmetry phenomenology.



قيم البحث

اقرأ أيضاً

226 - Vasiliki A. Mitsou 2015
$R$-parity violating supersymmetric models (RPV SUSY) are becoming increasingly more appealing than its $R$-parity conserving counterpart in view of the hitherto non-observation of SUSY signals at the LHC. In this paper, we discuss RPV scenarios wher e neutrino masses are naturally generated, namely RPV through bilinear terms (bRPV) and the $mu$-from-$ u$ supersymmetric standard model ($mu u$SSM). The latter is characterised by a rich Higgs sector that easily accommodates a 125-GeV Higgs boson. The phenomenology of such models at the LHC is reviewed, giving emphasis on final states with displaced objects, and relevant results obtained by LHC experiments are presented. The implications for dark matter for these theoretical proposals is also addressed.
R-parity conservation is an {it ad hoc} assumption in the most popular version of the supersymmetric standard model. Most studies of models which do allow for R-parity violation have been restricted to various limiting scenarios. The single-VEV param etrization used in this paper provides a workable framework to analyze phenomenology of the most general theory of SUSY without R-parity. We perform a comprehensive study of leptonic phenomenology at tree-level. Experimental constraints on various processes are studied individually and then combined to yield regions of admissible parameter space. In particular, we show that large R-parity violating bilinear couplings are not ruled out, especially for large $tanbeta$.
We revisit the limits on $R$-parity violation in the minimal supersymmetric standard model. In particular, we focus on the high-scale supersymmetry scenario in which all the sparticles are in excess of the inflationary scale of approximately $10^{13} $ GeV, and thus no sparticles ever come into thermal equilibrium. In this case the cosmological limits, stemming from the preservation of the baryon asymmetry that have been previously applied for weak scale supersymmetry, are now relaxed. We argue that even when sparticles are never in equilibrium, $R$-parity violation is still constrained via higher dimensional operators by neutrino and nucleon experiments and/or insisting on the preservation of a non-zero $B-L$ asymmetry.
In this letter, we report on lepton flavor violating Higgs decay into mu+tau in the framework of the generic supersymmetric standard model without R parity and list interesting combinations of R-parity violating parameters. We impose other known expe rimental constraints on the parameters of the model and show our results from the R-parity violating parameters. In our analysis, the branching ratio of Higgs to mu+tau can exceed 10^{-5} within admissible parameter space.
131 - B. C. Allanach , K. Sridhar 2012
We propose a supersymmetric explanation for the anomalously high forward backward asymmetry in top pair production measured by CDF and D0. We suppose that it is due to the t-channel exchange of a right-handed sbottom which couples to d_R and t_R, as is present in the R-parity violating minimal supersymmetric standard model. We show that all Tevatron and LHC experiments t tbar constraints may be respected for a sbottom mass between 300 and 1200 GeV, and a large Yukawa coupling >2.2, yielding A_{FB} up to 0.18. The non Standard Model contribution to the LHC charge asymmetry parameter is Delta A_C^y=0.017-0.045, small enough to be consistent with current measurements but non-zero and positive, allowing for LHC confirmation in the future within 20 fb^-1. A small additional contribution to the LHC t tbar production cross-section is also predicted, allowing a further test. We estimate that 10 fb^-1 of LHC luminosity would be sufficient to rule out the proposal to 95% confidence level, if the measurements of the t tbar cross-section turn out to be centred on the Standard Model prediction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا