ترغب بنشر مسار تعليمي؟ اضغط هنا

We present explicit evaluations of quantum speed limit times pertinent to the Markovian dynamics of an open continuous-variable system. Specifically, we consider the standard setting of a cavity mode of the quantum radiation field weakly coupled to a thermal bosonic reservoir. The evolution of the field state is ruled by the quantum optical master equation, which is known to have an exact analytic solution. Starting from a pure input state, we employ two indicators of how different the initial and evolved states are, namely, the fidelity of evolution and the Hilbert-Schmidt distance of evolution. The former was introduced by del Campo {em et al.} who derived a time-independent speed limit for the evolution of a Markovian open system. We evaluate it for this field-reservoir setting, with an arbitrary input pure state of the field mode. The resultant formula is then specialized to the coherent and Fock states. On the other hand, we exploit an alternative approach that employs both indicators of evolution mentioned above. Their rates of change have the same upper bound, and consequently provide a unique time-dependent quantum speed limit. It turns out that the associate quantum speed limit time built with the Hilbert-Schmidt metric is tighter than the fidelity-based one. As apposite applications, we investigate the damping of the coherent and Fock states by using the characteristic functions of the corresponding evolved states. General expressions of both the fidelity and the Hilbert-Schmidt distance of evolution are obtained and analyzed for these two classes of input states. In the case of a coherent state, we derive accurate formulas for their common speed limit and the pair of associate limit times.
Certification and quantification of correlations for multipartite states of quantum systems appear to be a central task in quantum information theory. We give here a unitary quantum-mechanical perspective of both entanglement and Einstein-Podolsky-Ro sen (EPR) steering of continuous-variable multimode states. This originates in the Heisenberg uncertainty relations for the canonical quadrature operators of the modes. Correlations of two-party $(N, text{vs} ,1)$-mode states are examined by using the variances of a pair of suitable EPR-like observables. It turns out that the uncertainty sum of these nonlocal variables is bounded from below by local uncertainties and is strengthened differently for separable states and for each one-way unsteerable ones. The analysis of the minimal properly normalized sums of these variances yields necessary conditions of separability and EPR unsteerability of $(N, text{vs} ,1)$-mode states in both possible ways of steering. When the states and the performed measurements are Gaussian, then these conditions are precisely the previously-known criteria of separability and one-way unsteerability.
This paper aims to stress the role of the Cahill-Glauber quasi-probability densities in defining, detecting, and quantifying the non-classicality of field states in quantum optics. The distance between a given pure state and the set of all pure class ical states is called here a geometric degree of non-classicality. As such, we investigate non-classicality of a pure single-mode state of the radiation field by using the coherent states as a reference set of pure classical states. It turns out that any such distance is expressed in terms of the maximal value of the Husimi $Q$ function. As an insightful application we consider the de-Gaussification process produced when preparing a quantum state by adding $p$ photons to a pure Gaussian one. For a coherent-state input, we get an analytic degree of non-classicality which compares interestingly with the previously evaluated entanglement potential. Then we show that addition of a single photon to a squeezed vacuum state causes a considerable enhancement of non-classicality, especially at weak and moderate squeezing of the original state. By contrast, addition of further photons is less effective.
We analyze the polarization of a quantum radiation field under a de-Gaussification process. Specifically, we consider the addition of photons to a two-mode thermal state to get mixed non-Gaussian and nonclassical states which are still diagonal in th e Fock basis. Stokes-operator-based degrees of polarization and two distance-type measures defined with Hilbert-Schmidt and Bures metrics are investigated. For a better insight we here introduce a polarization degree based on the relative entropy. Polarization of the thermal states is fully investigated and simple closed expressions are found for all the defined degrees. The evaluated degrees for photon-added states are then compared to the corresponding ones for the two-mode thermal states they originate from. We present interesting findings which tell us that some popular degrees of polarization are not fully consistent. However, the most solidly defined degrees, which are based on the Bures metric and relative entropy, clearly indicate an enhancement of polarization through de-Gaussification. This conclusion is supported by the behavior of the degrees of polarization of the Fock states, which are finally discussed as a limit case.
We investigate the separability of the two-mode Gaussian states by using the variances of a pair of Einstein-Podolsky-Rosen (EPR)-like observables. Our starting point is inspired by the general necessary condition of separability introduced by Duan { em et al.} [Phys. Rev. Lett. {bf 84}, 2722 (2000)]. We evaluate the minima of the normalized forms of both the product and sum of such variances, as well as that of a regularized sum. Making use of Simons separability criterion, which is based on the condition of positivity of the partial transpose (PPT) of the density matrix [Phys. Rev. Lett. {bf 84}, 2726 (2000)], we prove that these minima are separability indicators in their own right. They appear to quantify the greatest amount of EPR-like correlations that can be created in a two-mode Gaussian state by means of local operations. Furthermore, we reconsider the EPR-like approach to the separability of two-mode Gaussian states which was developed by Duan {em et al.} with no reference to the PPT condition. By optimizing the regularized form of their EPR-like uncertainty sum, we derive a separability indicator for any two-mode Gaussian state. We prove that the corresponding EPR-like condition of separability is manifestly equivalent to Simons PPT one. The consistency of these two distinct approaches (EPR-like and PPT) affords a better understanding of the examined separability problem, whose explicit solution found long ago by Simon covers all situations of interest.
We investigate two special classes of two-mode Gaussian states of light that are important from both the experimental and theoretical points of view: the mode-mixed thermal states and the squeezed thermal ones. Aiming to a parallel study, we write th e Uhlmann fidelity between pairs of states belonging to each class in terms of their defining parameters. The quantum Fisher information matrices on the corresponding four-dimensional manifolds are diagonal and allow insightful parameter estimation. The scalar curvatures of the Bures metric on both Riemannian manifolds of special two-mode Gaussian states are evaluated and discussed. They are functions of two variables, namely, the mean numbers of photons in the incident thermal modes. Our comparative analysis opens the door to further investigation of the interplay between geometry and statistics for Gaussian states produced in simple optical devices.
In this paper we examine the decay of quantum correlations for the radiation field in a two-mode squeezed thermal state in contact with local thermal reservoirs. Two measures of the evolving quantum correlations are compared: the entanglement of form ation and the quantum discord. We derive analytic expressions of the entanglement-death time in two special cases: when the reservoirs for each mode are identical, as well as when a single reservoir acts on the first mode only. In the latter configuration, we show that all the pure Gaussian states lose their entanglement at the same time determined solely by the field-reservoir coupling. Also investigated is the evolution of the Gaussian quantum discord for the same choices of thermal baths. We notice that the discord can increase in time above its initial value in a special situation, namely, when it is defined by local measurements on the attenuated mode and the input state is mixed. This enhancement of discord is stronger for zero-temperature reservoirs and increases with the input degree of mixing.
Especially investigated in recent years, the Gaussian discord can be quantified by a distance between a given two-mode Gaussian state and the set of all the zero-discord two-mode Gaussian states. However, as this set consists only of product states, such a distance captures all the correlations (quantum and classical) between modes. Therefore it is merely un upper bound for the geometric discord, no matter which is the employed distance. In this work we choose for this purpose the Hellinger metric that is known to have many beneficial properties recommending it as a good measure of quantum behaviour. In general, this metric is determined by affinity, a relative of the Uhlmann fidelity with which it shares many important features. As a first step of our work, the affinity of a pair of $n$-mode Gaussian states is written. Then, in the two-mode case, we succeeded in determining exactly the closest Gaussian product state and computed the Gaussian discord accordingly. The obtained general formula is remarkably simple and becomes still friendlier in the significant case of symmetric two-mode Gaussian states. We then analyze in detail two special classes of two-mode Gaussian states of theoretical and experimental interest as well: the squeezed thermal states and the mode-mixed thermal ones. The former are separable under a well-known threshold of squeezing, while the latter are always separable. It is worth stressing that for symmetric states belonging to either of these classes, we find consistency between their geometric Hellinger discord and the originally defined discord in the Gaussian approach. At the same time, the Gaussian Hellinger discord of such a state turns out to be a reliable measure of the total amount of its cross correlations.
125 - Iulia Ghiu , Paulina Marian , 2013
We investigate non-Gaussianity properties for a set of classical one-mode states obtained by subtracting photons from a thermal state. Three distance-type degrees of non-Gaussianity used for these states are shown to have a monotonic behaviour with r espect to their mean photon number. Decaying of their non-Gaussianity under damping is found to be consistently described by the distance-type measures considered here. We also compare the dissipative evolution of non-Gaussianity when starting from $M$-photon-subtracted and $M$-photon-added thermal states
We prove that the closest Gaussian state to an arbitrary $N$-mode field state through the relative entropy is built with the covariance matrix and the average displacement of the given state. Consequently, the relative entropy of an $N$-mode state to its associate Gaussian one is an exact distance-type measure of non-Gaussianity. In order to illustrate this finding, we discuss the general properties of the $N$-mode Fock-diagonal states and evaluate their exact entropic amount of non-Gaussianity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا