ﻻ يوجد ملخص باللغة العربية
In this paper we examine the decay of quantum correlations for the radiation field in a two-mode squeezed thermal state in contact with local thermal reservoirs. Two measures of the evolving quantum correlations are compared: the entanglement of formation and the quantum discord. We derive analytic expressions of the entanglement-death time in two special cases: when the reservoirs for each mode are identical, as well as when a single reservoir acts on the first mode only. In the latter configuration, we show that all the pure Gaussian states lose their entanglement at the same time determined solely by the field-reservoir coupling. Also investigated is the evolution of the Gaussian quantum discord for the same choices of thermal baths. We notice that the discord can increase in time above its initial value in a special situation, namely, when it is defined by local measurements on the attenuated mode and the input state is mixed. This enhancement of discord is stronger for zero-temperature reservoirs and increases with the input degree of mixing.
The resource theory of thermal operations explains the state transformations that are possible in a very specific thermodynamic setting: there is only one thermal bath, auxiliary systems can only be in corresponding thermal state (free states), and t
We consider the global thermal state of classical and quantum harmonic oscillators that interact with a reservoir. Ohmic damping of the oscillator can be exactly treated with a 1D scalar field reservoir, whereas general non-Ohmic damping is convenien
In the resource theory of thermodynamics, the decrease of the free energy based on von Neumann entropy is not a sufficient condition to determine free evolution. Rather, a whole family of generalised free energies $F_{alpha}$ must be monotonically de
Intrinsic quantum correlations supported by the $SU(2)otimes SU(2)$ structure of the Dirac equation used to describe particle/antiparticle states, optical ion traps and bilayer graphene are investigated and connected to the description of local prope
We consider blocks of quantum spins in a chain at thermal equilibrium, focusing on their properties from a thermodynamical perspective. Whereas in classical systems the temperature behaves as an intensive magnitude, a deviation from this behavior is