ﻻ يوجد ملخص باللغة العربية
We prove that the closest Gaussian state to an arbitrary $N$-mode field state through the relative entropy is built with the covariance matrix and the average displacement of the given state. Consequently, the relative entropy of an $N$-mode state to its associate Gaussian one is an exact distance-type measure of non-Gaussianity. In order to illustrate this finding, we discuss the general properties of the $N$-mode Fock-diagonal states and evaluate their exact entropic amount of non-Gaussianity.
We introduce a measure of quantum non-Gaussianity (QNG) for those quantum states not accessible by a mixture of Gaussian states in terms of quantum relative entropy. Specifically, we employ a convex-roof extension using all possible mixed-state decom
As two of the most important entanglement measures--the entanglement of formation and the entanglement of distillation--have so far been limited to bipartite settings, the study of other entanglement measures for multipartite systems appears necessar
The existence of a positive log-Sobolev constant implies a bound on the mixing time of a quantum dissipative evolution under the Markov approximation. For classical spin systems, such constant was proven to exist, under the assumption of a mixing con
Given two pairs of quantum states, a fundamental question in the resource theory of asymmetric distinguishability is to determine whether there exists a quantum channel converting one pair to the other. In this work, we reframe this question in such
We suggest an improved version of Robertson-Schrodinger uncertainty relation for canonically conjugate variables by taking into account a pair of characteristics of states: non-Gaussianity and mixedness quantified by using fidelity and entropy, respe