ﻻ يوجد ملخص باللغة العربية
We present explicit evaluations of quantum speed limit times pertinent to the Markovian dynamics of an open continuous-variable system. Specifically, we consider the standard setting of a cavity mode of the quantum radiation field weakly coupled to a thermal bosonic reservoir. The evolution of the field state is ruled by the quantum optical master equation, which is known to have an exact analytic solution. Starting from a pure input state, we employ two indicators of how different the initial and evolved states are, namely, the fidelity of evolution and the Hilbert-Schmidt distance of evolution. The former was introduced by del Campo {em et al.} who derived a time-independent speed limit for the evolution of a Markovian open system. We evaluate it for this field-reservoir setting, with an arbitrary input pure state of the field mode. The resultant formula is then specialized to the coherent and Fock states. On the other hand, we exploit an alternative approach that employs both indicators of evolution mentioned above. Their rates of change have the same upper bound, and consequently provide a unique time-dependent quantum speed limit. It turns out that the associate quantum speed limit time built with the Hilbert-Schmidt metric is tighter than the fidelity-based one. As apposite applications, we investigate the damping of the coherent and Fock states by using the characteristic functions of the corresponding evolved states. General expressions of both the fidelity and the Hilbert-Schmidt distance of evolution are obtained and analyzed for these two classes of input states. In the case of a coherent state, we derive accurate formulas for their common speed limit and the pair of associate limit times.
The space of density matrices is embedded in a Euclidean space to deduce the dynamical equation satisfied by the state of an open quantum system. The Euclidean norm is used to obtain an explicit expression for the speed of the evolution of the state.
One of the fundamental physical limits on the speed of time evolution of a quantum state is known in the form of the celebrated Mandelshtam-Tamm inequality. This inequality gives an answer to the question on how fast an isolated quantum system can ev
The dynamics of an open quantum system with balanced gain and loss is not described by a PT-symmetric Hamiltonian but rather by Lindblad operators. Nevertheless the phenomenon of PT-symmetry breaking and the impact of exceptional points can be observ
Continuous-time Markovian evolution appears to be manifestly different in classical and quantum worlds. We consider ensembles of random generators of $N$-dimensional Markovian evolution, quantum and classical ones, and evaluate their universal spectr
We study how useful random states are for quantum metrology, i.e., surpass the classical limits imposed on precision in the canonical phase estimation scenario. First, we prove that random pure states drawn from the Hilbert space of distinguishable p