ترغب بنشر مسار تعليمي؟ اضغط هنا

We define an infinite chain of subcategories of the partition category by introducing the left-height ($l$) of a partition. For the Brauer case, the chain starts with the Temperley-Lieb ($l=-1$) and ends with the Brauer ($l=infty$) category. The End sets are algebras, i.e., an infinite tower thereof for each $l$, whose representation theory is studied in the paper.
93 - S. Matsushita 2012
We report the latest results of 225 GHz atmospheric opacity measurements from two arctic sites; one on high coastal terrain near the Eureka weather station, on Ellesmere Island, Canada, and the other at the Summit Station near the peak of the Greenla nd icecap. This is a campaign to search for a site to deploy a new telescope for submillimeter Very Long Baseline Interferometry and THz astronomy in the northern hemisphere. Since 2011, we have obtained 3 months of winter data near Eureka, and about one year of data at the Summit Station. The results indicate that these sites offer a highly transparent atmosphere for observations in submillimeter wavelengths. The Summit Station is particularly excellent, and its zenith opacity at 225 GHz is statistically similar to the Atacama Large Milllimeter/submillimeter Array in Chile. In winter, the opacity at the Summit Station is even comparable to that observed at the South Pole.
121 - R. Voss , P. Martin , R. Diehl 2012
We study the populations of massive stars in the Carina region and their energetic feedback and ejection of $^{26}$Al. We did a census of the stellar populations in young stellar clusters within a few degrees of the Carina Nebula. For each star we es timated the mass, based on the spectral type and the host cluster age. We used population synthesis to calculate the energetic feedback and ejection of $^{26}$Al from the winds of the massive stars and their supernova explosions. We used 7 years of INTEGRAL observations to measure the $^{26}$Al signal from the region. The INTEGRAL $^{26}$Al signal is not significant with a best-fit value of about 1.5e-5 ph/cm^2/s, approximately half of the published Compton Gamma Ray Observatory (CGRO) result, but in agreement with the latest CGRO estimates. Our analysis of the stellar populations in the young clusters leads to an expected signal of half the observed value, but the results are consistent within 2 sigma. We find that the fraction of $^{26}$Al ejected in Wolf-Rayet winds is high, and the observed signal is unlikely to be caused by $^{26}$Al ejected in supernovae alone, indicating a strong wind ejection of $^{26}$Al. Due to the lack of prominent O stars, regions with ages $gtrsim$10 Myr are often neglected in studies of OB associations. We find that in the Carina region such clusters contribute significantly to the stellar mass and the energetics of the region.
We report the design and development of a piezoelectric sample rotation system, and its integration into an Oxford Instruments Kelvinox 100 dilution refrigerator, for orientation-dependent studies of quantum transport in semiconductor nanodevices at millikelvin temperatures in magnetic fields up to 10T. Our apparatus allows for continuous in situ rotation of a device through >100deg in two possible configurations. The first enables rotation of the field within the plane of the device, and the second allows the field to be rotated from in-plane to perpendicular to the device plane. An integrated angle sensor coupled with a closed-loop feedback system allows the device orientation to be known to within +/-0.03deg whilst maintaining the sample temperature below 100mK.
We re-examine the quantum tau_q and transport tau_t scattering lifetimes due to background impurities in two-dimensional systems. We show that the well-known logarithmic divergence in the quantum lifetime is due to the non-physical assumption of an i nfinitely thick heterostructure, and demonstrate that the existing non-divergent multiple scattering theory can lead to unphysical quantum scattering lifetimes in high quality heterostructures. We derive a non-divergent scattering lifetime for finite thickness structures, which can be used both with lowest order perturbation theory and the multiple scattering theory. We calculate the quantum and transport lifetimes for electrons in generic GaAs-AlGaAs heterostructures, and find that the correct `rule of thumb to distinguish the dominant scattering mechanisms in GaAs heterostructures should be tau_t/tau_q < 10 for background impurities and tau_t/tau_q > 10 for remote impurities. Finally we present the first comparison of theoretical results for tau_q and tau_t with experimental data from a GaAs 2DEG in which only background impurity scattering is present. We obtain excellent agreement between the calculations and experimental data, and are able to extract the background impurity density in both the GaAs and AlGaAs regions.
This paper reports some advances in the study of the symplectic blob algebra. We find a presentation for this algebra. We find a minimal poset for this as a quasi-hereditary algebra. We discuss how to reduce the number of parameters defining the alge bra from 6 to 4 (or even 3) without loss of representation theoretic generality. We then find some non-semisimple specialisations by calculating Gram determinants for certain cell modules (or standard modules) using the good parametrisation defined. We finish by considering some quotients of specialisations of the symplectic blob algebra which are isomorphic to Temperley--Lieb algebras of type $A$.
The strength of the Zeeman splitting induced by an applied magnetic field is an important factor for the realization of spin-resolved transport in mesoscopic devices. We measure the Zeeman splitting for a quantum point contact etched into a Ga0.25In0 .75As quantum well, with the field oriented parallel to the transport direction. We observe an enhancement of the Lande g-factor from |g*|=3.8 +/- 0.2 for the third subband to |g*|=5.8 +/- 0.6 for the first subband, six times larger than in GaAs. We report subband spacings in excess of 10 meV, which facilitates quantum transport at higher temperatures.
In this paper we give a geometrical framework for the design of observers on finite-dimensional Lie groups for systems which possess some specific symmetries. The design and the error (between true and estimated state) equation are explicit and intri nsic. We consider also a particular case: left-invariant systems on Lie groups with right equivariant output. The theory yields a class of observers such that error equation is autonomous. The observers converge locally around any trajectory, and the global behavior is independent from the trajectory, which reminds of the linear stationary case.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا