ﻻ يوجد ملخص باللغة العربية
We define an infinite chain of subcategories of the partition category by introducing the left-height ($l$) of a partition. For the Brauer case, the chain starts with the Temperley-Lieb ($l=-1$) and ends with the Brauer ($l=infty$) category. The End sets are algebras, i.e., an infinite tower thereof for each $l$, whose representation theory is studied in the paper.
In this paper, we will study the Dieck-Temlerley-Lieb algebras of type Bn and Cn. We compute their ranks and describe a basis for them by using some results from corresponding Brauer algebras and Temperley-Lieb algebras.
We first give a short intrinsic, diagrammatic proof of the First Fundamental Theorem of invariant theory (FFT) for the special orthogonal group $text{SO}_m(mathbb{C})$, given the FFT for $text{O}_m(mathbb{C})$. We then define, by means of a presentat
A well-known theorem of Buchweitz provides equivalences between three categories: the stable category of Gorenstein projective modules over a Gorenstein algebra, the homotopy category of acyclic complexes of projectives, and the singularity category.
We introduce the category of finite strings and study its basic properties. The category is closely related to the augmented simplex category, and it models categories of linear representations. Each lattice of non-crossing partitions arises naturally as a lattice of subobjects.
We prove the twisted Whittaker category on the affine flag variety and the category of representations of the mixed quantum group are equivalent.