ﻻ يوجد ملخص باللغة العربية
In this paper we give a geometrical framework for the design of observers on finite-dimensional Lie groups for systems which possess some specific symmetries. The design and the error (between true and estimated state) equation are explicit and intrinsic. We consider also a particular case: left-invariant systems on Lie groups with right equivariant output. The theory yields a class of observers such that error equation is autonomous. The observers converge locally around any trajectory, and the global behavior is independent from the trajectory, which reminds of the linear stationary case.
The purpose of this paper is to describe explicitly the solution for linear control systems on Lie groups. In case of linear control systems with inner derivations, the solution is given basically by the product of the exponential of the associated i
This paper presents three non-linear observers on three examples of engineering interest: a chemical reactor, a non-holonomic car, and an inertial navigation system. For each example, the design is based on physical symmetries. This motivates the the
In contrast to the Euler-Poincar{e} reduction of geodesic flows of left- or right-invariant metrics on Lie groups to the corresponding Lie algebra (or its dual), one can consider the reduction of the geodesic flows to the group itself. The reduced ve
In this paper, we study graphical conditions for structural controllability and accessibility of drifted bilinear systems over Lie groups. We consider a bilinear control system with drift and controlled terms that evolves over the special orthogonal
We develop a discrete-time optimal control framework for systems evolving on Lie groups. Our work generalizes the original Differential Dynamic Programming method, by employing a coordinate-free, Lie-theoretic approach for its derivation. A key eleme