ترغب بنشر مسار تعليمي؟ اضغط هنا

We study charge transport in a monolayer molybdenum disulfide nanoflake over a wide range of carrier density, temperature, and electric bias. We find that the transport is best described by a percolating picture in which the disorder breaks translati onal invariance, breaking the system up into a series of puddles, rather than previous pictures in which the disorder is treated as homogeneous and uniform. Our work provides insight to a unified picture of charge transport in monolayer molybdenum disulfide nanoflakes and contributes to the development of next-generation molybdenum disulfide based devices.
We have fabricated and characterized the Landau level spin diode in GaAs two dimensional hole system. We used the hole Landau level spin diode to probe the hyperfine coupling between the hole and nuclear spins and found no detectable net nuclear pola rization, indicating that hole-nuclear spin flip-flop processes are suppressed by at least three orders of magnitude compared to GaAs electron systems.
We fabricated an etched hole quantum dot in a Si-doped (311)A AlGaAs/GaAs heterostructure to study disorder effects via magnetoconductance fluctuations (MCF) at millikelvin temperatures. Recent experiments in electron quantum dots have shown that the MCF is sensitive to the disorder potential created by remote ionised impurities. We utilize this to study the temporal/thermal stability of Si acceptors in p-type AlGaAs/GaAs heterostructures. In particular, we use a surface gate to cause charge migration between Si acceptor sites at T = 40 mK, and detect the ensuing changes in the disorder potential using the MCF. We show that Si acceptors are metastable at T = 40 mK and that raising the device to a temperature T = 4.2 K and returning to T = 40 mK is sufficient to produce complete decorrelation of the MCF. The same decorrelation occurs at T ~ 165 K for electron quantum dots; by comparing with the known trap energy for Si DX centers, we estimate that the shallow acceptor traps in our heterostructures have an activation energy EA ~ 3 meV. Our method can be used to study charge noise and dopant stability towards optimisation of semiconductor materials and devices.
We report a study of transport blockade features in a quantum dot single-electron transistor, based on an undoped AlGaAs/GaAs heterostructure. We observe suppression of transport through the ground state of the dot, as well as negative differential c onductance at finite source-drain bias. The temperature and magnetic field dependence of these features indicate the couplings between the leads and the quantum dot states are suppressed. We attribute this to two possible mechanisms: spin effects which determine whether a particular charge transition is allowed based on the change in total spin, and the interference effects that arise from coherent tunneling of electrons in the dot.
We have measured the zero bias peak in differential conductance in a hole quantum dot. We have scaled the experimental data with applied bias and compared to real time renormalization group calculations of the differential conductance as a function o f source-drain bias in the limit of zero temperature and at finite temperatures. The experimental data show deviations from the T=0 calculations at low bias, but are in very good agreement with the finite T calculations. The Kondo temperature T_K extracted from the data using T=0 calculations, and from the peak width at 2/3 maximum, is significantly higher than that obtained from finite T calculations.
The out-of-plane g-factor g_perp for quasi-2D holes in a (100) GaAs heterostructure is studied using a variable width quantum wire. A direct measurement of the Zeeman splitting is performed in a magnetic field applied perpendicular to the 2D plane. W e measure an out-of-plane g-factor up to g_perp = 5, which is larger than previous optical studies of g_perp, and is approaching the long predicted but never experimentally verified out-of-plane g-factor of 7.2 for heavy holes.
Quantum point contacts (QPCs) have shown promise as nanoscale spin-selective components for spintronic applications and are of fundamental interest in the study of electron many-body effects such as the 0.7 x 2e^2/h anomaly. We report on the dependen ce of the 1D Lande g-factor g* and 0.7 anomaly on electron density and confinement in QPCs with two different top-gate architectures. We obtain g* values up to 2.8 for the lowest 1D subband, significantly exceeding previous in-plane g-factor values in AlGaAs/GaAs QPCs, and approaching that in InGaAs/InP QPCs. We show that g* is highly sensitive to confinement potential, particularly for the lowest 1D subband. This suggests careful management of the QPCs confinement potential may enable the high g* desirable for spintronic applications without resorting to narrow-gap materials such as InAs or InSb. The 0.7 anomaly and zero-bias peak are also highly sensitive to confining potential, explaining the conflicting density dependencies of the 0.7 anomaly in the literature.
We have fabricated AlGaAs/GaAs heterostructure devices in which the conduction channel can be populated with either electrons or holes simply by changing the polarity of a gate bias. The heterostructures are entirely undoped, and carriers are instead induced electrostatically. We use these devices to perform a direct comparison of the scattering mechanisms of two-dimensional (2D) electrons ($mu_textrm{peak}=4times10^6textrm{cm}^2/textrm{Vs}$) and holes ($mu_textrm{peak}=0.8times10^6textrm{cm}^2/textrm{Vs}$) in the same conduction channel with nominally identical disorder potentials. We find significant discrepancies between electron and hole scattering, with the hole mobility being considerably lower than expected from simple theory.
We report the observation of Kondo physics in a spin- 3/2 hole quantum dot. The dot is formed close to pinch-off in a hole quantum wire defined in an undoped AlGaAs/GaAs heterostructure. We clearly observe two distinctive hallmarks of quantum dot Kon do physics. First, the Zeeman spin-splitting of the zero-bias peak in the differential conductance is independent of gate voltage. Second, this splitting is twice as large as the splitting for the lowest one-dimensional subband. We show that the Zeeman splitting of the zero-bias peak is highly-anisotropic, and attribute this to the strong spin-orbit interaction for holes in GaAs.
We have fabricated quantum dot single electron transistors, based on AlGaAs/GaAs heterojunctions without modulation doping, which exhibit clear and stable Coulomb blockade oscillations. The temperature dependence of the Coulomb blockade peak lineshap e is well described by standard Coulomb blockade theory in the quantum regime. Bias spectroscopy measurements have allowed us to directly extract the charging energy, and showed clear evidence of excited state transport, confirming that individual quantum states in the dot can be resolved.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا