ترغب بنشر مسار تعليمي؟ اضغط هنا

Landau level spin diode in a GaAs two dimensional hole system

106   0   0.0 ( 0 )
 نشر من قبل Oleh Klochan
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have fabricated and characterized the Landau level spin diode in GaAs two dimensional hole system. We used the hole Landau level spin diode to probe the hyperfine coupling between the hole and nuclear spins and found no detectable net nuclear polarization, indicating that hole-nuclear spin flip-flop processes are suppressed by at least three orders of magnitude compared to GaAs electron systems.

قيم البحث

اقرأ أيضاً

We report the first unambiguous observation of a fractional quantum Hall state in the Landau level of a two-dimensional hole sample at the filling factor $ u=8/3$. We identified this state by a quantized Hall resistance and an activated temperature d ependence of the longitudinal resistance and found an energy gap of 40 mK. To our surprise the particle-hole conjugate state at filling factor $ u=7/3$ in our sample does not develop down to 6.9 mK. This observation is contrary to that in electron samples in which the 7/3 state is typically more stable than the 8/3 state. We present evidence that the asymmetry between the 7/3 and 8/3 states in our hole sample is due to Landau level mixing.
Magneto-transport measurements are performed on the two-dimensional electron system (2DES) in an AlGaAs/GaAs heterostructure. By increasing the magnetic field perpendicular to the 2DES, magnetoresistivity oscillations due to Landau quantisation can b e identified just near the direct insulator-quantum Hall (I-QH) transition. However, different mobilities are obtained from the oscillations and transition point. Our study shows that the direct I-QH transition does not always correspond to the onset of strong localisation.
We have measured the resistance noise of a two-dimensional (2D)hole system in a high mobility GaAs quantum well, around the 2D metal-insulator transition (MIT) at zero magnetic field. The normalized noise power $S_R/R^2$ increases strongly when the h ole density p_s is decreased, increases slightly with temperature (T) at the largest densities, and decreases strongly with T at low p_s. The noise scales with the resistance, $S_R/R^2 sim R^{2.4}$, as for a second order phase transition such as a percolation transition. The p_s dependence of the conductivity is consistent with a critical behavior for such a transition, near a density p* which is lower than the observed MIT critical density p_c.
We present time-resolved Kerr rotation measurements of electron spin dynamics in a GaAs/AlGaAs heterojunction system that contains a high-mobility two-dimensional electron gas (2DEG). Due to the complex layer structure of this material the Kerr rotat ion signals contain information from electron spins in three different layers: the 2DEG layer, a GaAs epilayer in the heterostructure, and the underlying GaAs substrate. The 2DEG electrons can be observed at low pump intensities, using that they have a less negative g-factor than electrons in bulk GaAs regions. At high pump intensities, the Kerr signals from the GaAs epilayer and the substrate can be distinguished when using a barrier between the two layers that blocks intermixing of the two electron populations. This allows for stronger pumping of the epilayer, which results in a shift of the effective g-factor. Thus, three populations can be distinguished using differences in g-factor. We support this interpretation by studying how the spin dynamics of each population has its unique dependence on temperature, and how they correlate with time-resolved reflectance signals.
82 - E. M. Gonzalez , Y. Lin , 2000
We have measured the zero-bias differential tunneling conductance of InAs/AlSb/GaS b/AlSb/InAs heterostructures at low temperatures (1.7K < T < 60K) and unde r a magnetic field at various angles with the heterostructures interfaces. Shubni kov-de Haa s oscillations in the magnetoconductance reveal the two-dimensional (2D) character of the electrons accumulated at the InAs interfaces and yield their num ber in each of them. The temperature dependence of the oscillations suggests the f ormation of a field-induced energy gap at the Fermi level, similar to that observe d before in simpler 2D-2D tunneling systems. A calculation of the magnetoconductan ce that considers different 2D densities in the two InAs electrodes agrees with th e main observations, but fails to explain features that might be related to the pr esence of 2D holes in the GaSb region.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا