ترغب بنشر مسار تعليمي؟ اضغط هنا

Determining the stability and activation energy of Si acceptors in AlGaAs using quantum interference in an open hole quantum dot

182   0   0.0 ( 0 )
 نشر من قبل Damon Carrad
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We fabricated an etched hole quantum dot in a Si-doped (311)A AlGaAs/GaAs heterostructure to study disorder effects via magnetoconductance fluctuations (MCF) at millikelvin temperatures. Recent experiments in electron quantum dots have shown that the MCF is sensitive to the disorder potential created by remote ionised impurities. We utilize this to study the temporal/thermal stability of Si acceptors in p-type AlGaAs/GaAs heterostructures. In particular, we use a surface gate to cause charge migration between Si acceptor sites at T = 40 mK, and detect the ensuing changes in the disorder potential using the MCF. We show that Si acceptors are metastable at T = 40 mK and that raising the device to a temperature T = 4.2 K and returning to T = 40 mK is sufficient to produce complete decorrelation of the MCF. The same decorrelation occurs at T ~ 165 K for electron quantum dots; by comparing with the known trap energy for Si DX centers, we estimate that the shallow acceptor traps in our heterostructures have an activation energy EA ~ 3 meV. Our method can be used to study charge noise and dopant stability towards optimisation of semiconductor materials and devices.

قيم البحث

اقرأ أيضاً

We carry out microphotoluminescence measurements of an acceptor-bound exciton (A^0X) recombination in the applied magnetic field with a single impurity resolution. In order to describe the obtained spectra we develop a theoretical model taking into a ccount a quantum well (QW) confinement, an electron-hole and hole-hole exchange interaction. By means of fitting the measured data with the model we are able to study the fine structure of individual acceptors inside the QW. The good agreement between our experiments and the model indicates that we observe single acceptors in a pure two-dimensional environment whose states are unstrained in the QW plain.
180 - S. Amasha , I. G. Rau , M. Grobis 2010
We report the observation of Coulomb blockade in a quantum dot contacted by two quantum point contacts each with a single fully-transmitting mode, a system previously thought to be well described without invoking Coulomb interactions. At temperatures below 50 mK we observe a periodic oscillation in the conductance of the dot with gate voltage that corresponds to a residual quantization of charge. From the temperature and magnetic field dependence, we infer the oscillations are Mesoscopic Coulomb Blockade, a type of Coulomb blockade caused by electron interference in an otherwise open system.
Low-temperature transport properties of a lateral quantum dot formed by overlaying finger gates in a clean one-dimensional channel are investigated. Continuous and periodic oscillations superimposed upon ballistic conductance steps are observed, when the conductance G of the dot changes within a wide range 0<G<6e^2/h. Calculations of the electrostatics confirm that the measured periodic conductance oscillations correspond to successive change of the total charge of the dot by $e$. By modelling the transport it is shown that the progression of the Coulomb oscillations into the region G>2e^2/h may be due to suppression of inter-1D-subband scattering. Fully transmitted subbands contribute to coherent background of conductance, while sequential tunneling via weakly transmitted subbands leads to Coulomb charging of the dot.
We study the Zeeman splitting in lateral quantum dots that are defined in GaAs-AlGaAs het- erostructures by means of split gates. We demonstrate a non-linear dependence of the splitting on magnetic field and its substantial variations from dot to dot and from heterostructure to het- erostructure. These phenomena are important in the context of information processing since the tunability and dot-dependence of the Zeeman splitting allow for a selective manipulation of spins. We show that spin-orbit effects related to the GaAs band structure quantitatively explain the ob- served magnitude of the non-linear dependence of the Zeeman splitting. Furthermore, spin-orbit effects result in a dependence of the Zeeman splitting on predominantly the out-of-plane quantum dot confinement energy. We also show that the variations of the confinement energy due to charge disorder in the heterostructure may explain the dependence of Zeeman splitting on the dot position. This position may be varied by changing the gate voltages which leads to an electrically tunable Zeeman splitting.
We study a quantum dot connected to the bulk by single-mode junctions at almost perfect conductance. Although the average charge $elangle N rangle$ of the dot is not discrete, its spin remains quantized: $s=1/2$ or $s=0$, depending (periodically) on the gate voltage. This drastic difference from the conventional mixed-valence regime stems from the existence of a broad-band, dense spectrum of discrete levels in the dot. In the doublet state, the Kondo effect develops at low temperatures. We find the Kondo temperature $T_K$ and the conductance at $Tlesssim T_K$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا