ترغب بنشر مسار تعليمي؟ اضغط هنا

We present profiles of temperature (Tx), gas mass, and hydrostatic mass estimated from new and archival X-ray observations of CLASH clusters. We compare measurements derived from XMM and Chandra observations with one another and compare both to gravi tational lensing mass profiles derived with CLASH HST and ground-based lensing data. Radial profiles of Chandra and XMM electron density and enclosed gas mass are nearly identical, indicating that differences in hydrostatic masses inferred from X-ray observations arise from differences in Tx measurements. Encouragingly, cluster Txs are consistent with one another at ~100-200 kpc radii but XMM Tx systematically decline relative to Chandra Tx at larger radii. The angular dependence of the discrepancy suggests additional investigation on systematics such as the XMM point spread function correction, vignetting and off-axis responses. We present the CLASH-X mass-profile comparisons in the form of cosmology-independent and redshift-independent circular-velocity profiles. Ratios of Chandra HSE mass profiles to CLASH lensing profiles show no obvious radial dependence in the 0.3-0.8 Mpc range. However, the mean mass biases inferred from the WL and SaWLens data are different. e.g., the weighted-mean value at 0.5 Mpc is <b> = 0.12 for the WL comparison and <b> = -0.11 for the SaWLens comparison. The ratios of XMM HSE mass profiles to CLASH lensing profiles show a pronounced radial dependence in the 0.3-1.0 Mpc range, with a weighted mean mass bias of value rising to <b>~0.3 at ~1 Mpc for the WL comparison and <b> of 0.25 for SaWLens comparison. The enclosed gas mass profiles from both Chandra and XMM rise to a value 1/8 times the total-mass profiles inferred from lensing at 0.5 Mpc and remain constant outside of that radius, suggesting that [8xMgas] profiles may be an excellent proxy for total-mass profiles at >0.5 Mpc in massive galaxy clusters.
We present IR and UV photometry for a sample of brightest cluster galaxies (BCGs). The BCGs are from a heterogeneous but uniformly characterized sample, the Archive of Chandra Cluster Entropy Profile Tables (ACCEPT), of X-ray galaxy clusters from the Chandra X-ray telescope archive with published gas temperature, density, and entropy profiles. We use archival GALEX, Spitzer, and 2MASS observations to assemble spectral energy distributions (SEDs) and colors for BCGs. We find that while the SEDs of some BCGs follow the expectation of red, dust-free old stellar populations, many exhibit signatures of recent star formation in the form of excess UV or mid-IR emission, or both. We establish a mean near-UV to 2MASS K color of 6.59 pm 0.34 for quiescent BCGs. We use this mean color to quantify the UV excess associated with star formation in the active BCGs. We use fits to a template of an evolved stellar population and library of starburst models and mid-IR star formation relations to estimate the obscured star formation rates. Many of the BCGs in X-ray clusters with low central gas entropy exhibit enhanced UV (38%) and mid-IR emission (43%), above that expected from an old stellar population. These excesses are consistent with on-going star formation activity in the BCG, star formation that appears to be enabled by the presence of high density, X-ray emitting gas in the the core of the cluster of galaxies. This hot, X-ray emitting gas may provide the enhanced ambient pressure and some of the fuel to trigger the star formation. This result is consistent with previous works that showed that BCGs in clusters with low central gas entropy host H{alpha} emission-line nebulae and radio sources, while clusters with high central gas entropy exhibit none of these features. UV and mid-IR measurements combined provide a complete picture of unobscured and obscured star formation occurring in these systems.
We present measurements of 5-25 {mu}m emission features of brightest cluster galaxies (BCGs) with strong optical emission lines in a sample of 9 cool-core clusters of galaxies observed with the Infrared Spectrograph on board the Spitzer Space Telesco pe. These systems provide a view of dusty molecular gas and star formation, surrounded by dense, X-ray emitting intracluster gas. Past work has shown that BCGs in cool-core clusters may host powerful radio sources, luminous optical emission line systems, and excess UV, while BCGs in other clusters never show this activity. In this sample, we detect polycyclic aromatic hydrocarbons (PAHs), extremely luminous, rotationally-excited molecular hydrogen line emission, forbidden line emission from ionized gas ([Ne II] and [Ne III]), and infrared continuum emission from warm dust and cool stars. We show here that these BCGs exhibit more luminous forbidden neon and H2 rotational line emission than star-forming galaxies with similar total infrared luminosities, as well as somewhat higher ratios of 70 {mu}m / 24 {mu}m luminosities. Our analysis suggests that while star formation processes dominate the heating of the dust and PAHs, a heating process consistent with suprathermal electron heating from the hot gas, distinct from star formation, is heating the molecular gas and contributing to the heating of the ionized gas in the galaxies. The survival of PAHs and dust suggests that dusty gas is somehow shielded from significant interaction with the X-ray gas.
We present UV broadband photometry and optical emission-line measurements for a sample of 32 Brightest Cluster Galaxies (BCGs) in clusters of the Representative XMM-Newton Cluster Structure Survey (REXCESS) with z = 0.06-0.18. The REXCESS clusters, c hosen to study scaling relations in clusters of galaxies, have X-ray measurements of high quality. The trends of star formation and BCG colors with BCG and host properties can be investigated with this sample. The UV photometry comes from the XMM Optical Monitor, supplemented by existing archival GALEX photometry. We detected Halpha and forbidden line emission in 7 (22%) of these BCGs, in optical spectra. All of the emission-line BCGs occupy clusters classified as cool cores, for an emission-line incidence rate of 70% for BCGs in cool core clusters. Significant correlations between the Halpha equivalent widths, excess UV production in the BCG, and the presence of dense, X-ray bright intracluster gas with a short cooling time are seen, including the fact that all of the Halpha emitters inhabit systems with short central cooling times and high central ICM densities. Estimates of the star formation rates based on Halpha and UV excesses are consistent with each other in these 7 systems, ranging from 0.1-8 solar masses per year. The incidence of emission-line BCGs in the REXCESS sample is intermediate, somewhat lower than in other X-ray selected samples (-35%), and somewhat higher than but statistically consistent with optically selected, slightly lower redshift BCG samples (-10-15%). The UV-optical colors (UVW1-R-4.7pm0.3) of REXCESS BCGs without strong optical emission lines are consistent with those predicted from templates and observations of ellipticals dominated by old stellar populations. We see no trend in UV-optical colors with optical luminosity, R-K color, X-ray temperature, redshift, or offset between X-ray centroid and X-ray peak (<w>).
79 - Megan Donahue 2009
I discuss and review recent studies of the signatures of activity in brightest cluster galaxies. Mid-IR spectra appear to show indications of star formation in a sample of 9 BCGs from de Messieres et al. (2009). Other processes like cosmic ray heatin g and conduction may play a role. The incidence of emission-line BCGs in X-ray selected clusters is higher than in optically-selected clusters, and higher still in systems known to be cool cores. We report early results of a UV and H-alpha survey of the BCGs in the REXCESS sample, which reveals that this sample has an interestingly low number of emission-line or UV excess systems. [Note added post facto: fainter emission-line sources discovered this summer increasses the rate to 22%.]
We present radial entropy profiles of the intracluster medium (ICM) for a collection of 239 clusters taken from the Chandra X-ray Observatorys Data Archive. Entropy is of great interest because it controls ICM global properties and records the therma l history of a cluster. Entropy is therefore a useful quantity for studying the effects of feedback on the cluster environment and investigating any breakdown of cluster self-similarity. We find that most ICM entropy profiles are well-fit by a model which is a power-law at large radii and approaches a constant value at small radii: K(r) = K0 + K100(r/100 kpc), where K0 quantifies the typical excess of core entropy above the best fitting power-law found at larger radii. We also show that the K0 distributions of both the full archival sample and the primary HIFLUGCS sample of Reiprich (2001) are bimodal with a distinct gap between K0 ~ 30 - 50 keV cm^2 and population peaks at K0 ~ 15 keV cm^2 and K0 ~ 150 keV cm^2. The effects of PSF smearing and angular resolution on best-fit K0 values are investigated using mock Chandra observations and degraded entropy profiles, respectively. We find that neither of these effects is sufficient to explain the entropy-profile flattening we measure at small radii. The influence of profile curvature and number of radial bins on best-fit K0 is also considered, and we find no indication K0 is significantly impacted by either. For completeness, we include previously unpublished optical spectroscopy of Halpha and [N II] emission lines discussed in Cavagnolo et al. (2008a). All data and results associated with this work are publicly available via the project web site.
Our Chandra X-ray Observatory archival study of intracluster entropy in a sample of 222 galaxy clusters shows that H-alpha and radio emission from the brightest cluster galaxy are much more pronounced when the clusters core gas entropy is < 30 keV cm ^2. The prevalence of H-alpha emission below this threshold indicates that it marks a dichotomy between clusters that can harbor multiphase gas and star formation in their cores and those that cannot. The fact that strong central radio emission also appears below this boundary suggests that AGN feedback turns on when the intracluster medium starts to condense, strengthening the case for AGN feedback as the mechanism that limits star formation in the Universes most luminous galaxies.
We explore the band dependence of the inferred X-ray temperature of the intracluster medium (ICM) for 192 well-observed galaxy clusters selected from the Chandra Data Archive. If the hot ICM is nearly isothermal in the projected region of interest, t he X-ray temperature inferred from a broad-band (0.7-7.0 keV) spectrum should be identical to the X-ray temperature inferred from a hard-band (2.0-7.0 keV) spectrum. However, if unresolved cool lumps of gas are contributing soft X-ray emission, the temperature of a best-fit single-component thermal model will be cooler for the broad-band spectrum than for the hard-band spectrum. Using this difference as a diagnostic, the ratio of best-fitting hard-band and broad-band temperatures may indicate the presence of cooler gas even when the X-ray spectrum itself may not have sufficient signal-to-noise to resolve multiple temperature components. To test this possible diagnostic, we extract X-ray spectra from core-excised annular regions for each cluster in our archival sample. We compare the X-ray temperatures inferred from single-temperature fits when the energy range of the fit is 0.7-7.0 keV (broad) and when the energy range is 2.0/(1+z)-7.0 keV (hard). We find that the hard-band temperature is significantly higher, on average, than the broad-band temperature. Upon further exploration, we find this temperature ratio is enhanced preferentially for clusters which are known merging systems. In addition, cool-core clusters tend to have best-fit hard-band temperatures that are in closer agreement with their best-fit broad-band temperatures. We show, using simulated spectra, that this diagnostic is sensitive to secondary cool components (TX = 0.5-3.0 keV) with emission measures >10-30% of the primary hot component.
We observed the brightest central galaxy (BCG) in the nearby (z=0.0821) cool core galaxy cluster Abell 2597 with the IRAC and MIPS instruments on board the Spitzer Space Telescope. The BCG was clearly detected in all Spitzer bandpasses, including the 70 and 160 micron wavebands. We report aperture photometry of the BCG. The spectral energy distribution exhibits a clear excess in the FIR over a Rayleigh-Jeans stellar tail, indicating a star formation rate of ~4-5 solar masses per year, consistent with the estimates from the UV and its H-alpha luminosity. This large FIR luminosity is consistent with that of a starburst or a Luminous Infrared Galaxy (LIRG), but together with a very massive and old population of stars that dominate the energy output of the galaxy. If the dust is at one temperature, the ratio of 70 to 160 micron fluxes indicate that the dust emitting mid-IR in this source is somewhat hotter than the dust emitting mid-IR in two BCGs at higher-redshift (z~0.2-0.3) and higher FIR luminosities observed earlier by Spitzer, in clusters Abell 1835 and Zwicky 3146.
We present deep emission-line imaging taken with the SOAR Optical Imaging Camera of the brightest cluster galaxy (BCG) in the nearby (z=0.035) X-ray cluster 2A0335+096. We analyze long-slit optical spectroscopy, archival VLA, Chandra X-ray, and XMM U V data. 2A0335+096 is a bright, cool-core X-ray cluster, once known as a cooling flow. Within the highly disturbed core revealed by Chandra X-ray observations, 2A0335+096 hosts a highly structured optical emission-line system. The redshift of the companion is within 100 km/s of the BCG and has certainly interacted with the BCG, and is likely bound to it. The comparison of optical and radio images shows curved filaments in H-alpha emission surrounding the resolved radio source. The velocity structure of the emission-line bar between the BCG nucleus and the companion galaxy provides strong evidence for an interaction between the two in the last ~50 Myrs. The age of the radio source is similar to the interaction time, so this interaction may have provoked an episode of radio activity. We estimate a star formation rate of >7 solar mass/yr based on the Halpha and archival UV data, a rate similar to, but somewhat lower than, the revised X-ray cooling rate of 10-30 solar masses/year estimated from XMM spectra by Peterson & workers. The Halpha nebula is limited to a region of high X-ray surface brightness and cool X-ray temperature. The detailed structures of H-alpha and X-ray gas differ. The peak of the X-ray emission is not the peak of H-alpha emission, nor does it lie in the BCG. The estimated age of the radio lobes and their interaction with the optical emission-line gas, the estimated timescale for depletion and accumulation of cold gas, and the dynamical time in the system are all similar, suggesting a common trigger mechanism.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا