ترغب بنشر مسار تعليمي؟ اضغط هنا

Signatures of Star Formation in Brightest Cluster Galaxies

123   0   0.0 ( 0 )
 نشر من قبل Megan Donahue
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Megan Donahue




اسأل ChatGPT حول البحث

I discuss and review recent studies of the signatures of activity in brightest cluster galaxies. Mid-IR spectra appear to show indications of star formation in a sample of 9 BCGs from de Messieres et al. (2009). Other processes like cosmic ray heating and conduction may play a role. The incidence of emission-line BCGs in X-ray selected clusters is higher than in optically-selected clusters, and higher still in systems known to be cool cores. We report early results of a UV and H-alpha survey of the BCGs in the REXCESS sample, which reveals that this sample has an interestingly low number of emission-line or UV excess systems. [Note added post facto: fainter emission-line sources discovered this summer increasses the rate to 22%.]



قيم البحث

اقرأ أيضاً

We used broad-band imaging data for 10 cool-core brightest cluster galaxies (BCGs) and conducted a Bayesian analysis using stellar population synthesis to determine the likely properties of the constituent stellar populations. Determination of ongoin g star formation rates (SFRs), in particular, has a direct impact on our understanding of the cooling of the intracluster medium (ICM), star formation and AGN-regulated feedback. Our model consists of an old stellar population and a series of young stellar components. We calculated marginalized posterior probability distributions for various model parameters and obtained 68% plausible intervals from them. The 68% plausible interval on the SFRs is broad, owing to a wide range of models that are capable of fitting the data, which also explains the wide dispersion in the star formation rates available in the literature. The ranges of possible SFRs are robust and highlight the strength in such a Bayesian analysis. The SFRs are correlated with the X-ray mass deposition rates (the former are factors of 4 to 50 lower than the latter), implying a picture where the cooling of the ICM is a contributing factor to star formation in cool-core BCGs. We find that 9 out of 10 BCGs have been experiencing starbursts since 6 Gyr ago. While four out of 9 BCGs seem to require continuous SFRs, 5 out of 9 seem to require periodic star formation on intervals ranging from 20 Myr to 200 Myr. This time scale is similar to the cooling-time of the ICM in the central (< 5 kpc) regions.
150 - F. S. Liu , Shude Mao (2 2012
We identify a total of 120 early-type Brightest Cluster Galaxies (BCGs) at 0.1<z<0.4 in two recent large cluster catalogues selected from the Sloan Digital Sky Survey (SDSS). They are selected with strong emission lines in their optical spectra, with both H{alpha} and [O II]{lambda}3727 line emission, which indicates significant ongoing star formation. They constitute about ~ 0.5% of the largest, optically-selected, low-redshift BCG sample, and the fraction is a strong function of cluster richness. Their star formation history can be well described by a recent minor and short starburst superimposed on an old stellar component, with the recent episode of star formation contributing on average only less than 1 percent of the total stellar mass. We show that the more massive star-forming BCGs in richer clusters tend to have higher star formation rate (SFR) and specific SFR (SFR per unit galaxy stellar mass). We also compare their statistical properties with a control sample selected from X-ray luminous clusters, and show that the fraction of star-forming BCGs in X-ray luminous clusters is almost one order of magnitude larger than that in optically-selected clusters. BCGs with star formation in cooling flow clusters usually have very flat optical spectra and show the most active star formation, which may be connected with cooling flows.
We present IR and UV photometry for a sample of brightest cluster galaxies (BCGs). The BCGs are from a heterogeneous but uniformly characterized sample, the Archive of Chandra Cluster Entropy Profile Tables (ACCEPT), of X-ray galaxy clusters from the Chandra X-ray telescope archive with published gas temperature, density, and entropy profiles. We use archival GALEX, Spitzer, and 2MASS observations to assemble spectral energy distributions (SEDs) and colors for BCGs. We find that while the SEDs of some BCGs follow the expectation of red, dust-free old stellar populations, many exhibit signatures of recent star formation in the form of excess UV or mid-IR emission, or both. We establish a mean near-UV to 2MASS K color of 6.59 pm 0.34 for quiescent BCGs. We use this mean color to quantify the UV excess associated with star formation in the active BCGs. We use fits to a template of an evolved stellar population and library of starburst models and mid-IR star formation relations to estimate the obscured star formation rates. Many of the BCGs in X-ray clusters with low central gas entropy exhibit enhanced UV (38%) and mid-IR emission (43%), above that expected from an old stellar population. These excesses are consistent with on-going star formation activity in the BCG, star formation that appears to be enabled by the presence of high density, X-ray emitting gas in the the core of the cluster of galaxies. This hot, X-ray emitting gas may provide the enhanced ambient pressure and some of the fuel to trigger the star formation. This result is consistent with previous works that showed that BCGs in clusters with low central gas entropy host H{alpha} emission-line nebulae and radio sources, while clusters with high central gas entropy exhibit none of these features. UV and mid-IR measurements combined provide a complete picture of unobscured and obscured star formation occurring in these systems.
118 - T.D. Rawle 2012
We present far-infrared (FIR) analysis of 68 Brightest Cluster Galaxies (BCGs) at 0.08 < z < 1.0. Deriving total infrared luminosities directly from Spitzer and Herschel photometry spanning the peak of the dust component (24-500um), we calculate the obscured star formation rate (SFR). 22(+6.2,-5.3)% of the BCGs are detected in the far-infrared, with SFR= 1-150 M_sun/yr. The infrared luminosity is highly correlated with cluster X-ray gas cooling times for cool-core clusters (gas cooling time <1 Gyr), strongly suggesting that the star formation in these BCGs is influenced by the cluster-scale cooling process. The occurrence of the molecular gas tracing Ha emission is also correlated with obscured star formation. For all but the most luminous BCGs (L_TIR > 2x10^11 L_sun), only a small (<0.4 mag) reddening correction is required for SFR(Ha) to agree with SFR_FIR. The relatively low Ha extinction (dust obscuration), compared to values reported for the general star-forming population, lends further weight to an alternate (external) origin for the cold gas. Finally, we use a stacking analysis of non-cool-core clusters to show that the majority of the fuel for star formation in the FIR-bright BCGs is unlikely to originate form normal stellar mass loss.
We present UV broadband photometry and optical emission-line measurements for a sample of 32 Brightest Cluster Galaxies (BCGs) in clusters of the Representative XMM-Newton Cluster Structure Survey (REXCESS) with z = 0.06-0.18. The REXCESS clusters, c hosen to study scaling relations in clusters of galaxies, have X-ray measurements of high quality. The trends of star formation and BCG colors with BCG and host properties can be investigated with this sample. The UV photometry comes from the XMM Optical Monitor, supplemented by existing archival GALEX photometry. We detected Halpha and forbidden line emission in 7 (22%) of these BCGs, in optical spectra. All of the emission-line BCGs occupy clusters classified as cool cores, for an emission-line incidence rate of 70% for BCGs in cool core clusters. Significant correlations between the Halpha equivalent widths, excess UV production in the BCG, and the presence of dense, X-ray bright intracluster gas with a short cooling time are seen, including the fact that all of the Halpha emitters inhabit systems with short central cooling times and high central ICM densities. Estimates of the star formation rates based on Halpha and UV excesses are consistent with each other in these 7 systems, ranging from 0.1-8 solar masses per year. The incidence of emission-line BCGs in the REXCESS sample is intermediate, somewhat lower than in other X-ray selected samples (-35%), and somewhat higher than but statistically consistent with optically selected, slightly lower redshift BCG samples (-10-15%). The UV-optical colors (UVW1-R-4.7pm0.3) of REXCESS BCGs without strong optical emission lines are consistent with those predicted from templates and observations of ellipticals dominated by old stellar populations. We see no trend in UV-optical colors with optical luminosity, R-K color, X-ray temperature, redshift, or offset between X-ray centroid and X-ray peak (<w>).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا