ترغب بنشر مسار تعليمي؟ اضغط هنا

Star Formation, Radio Sources, Cooling X-ray Gas, and Galaxy Interactions in the Brightest Cluster Galaxy in 2A0335+096

126   0   0.0 ( 0 )
 نشر من قبل Megan Donahue
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present deep emission-line imaging taken with the SOAR Optical Imaging Camera of the brightest cluster galaxy (BCG) in the nearby (z=0.035) X-ray cluster 2A0335+096. We analyze long-slit optical spectroscopy, archival VLA, Chandra X-ray, and XMM UV data. 2A0335+096 is a bright, cool-core X-ray cluster, once known as a cooling flow. Within the highly disturbed core revealed by Chandra X-ray observations, 2A0335+096 hosts a highly structured optical emission-line system. The redshift of the companion is within 100 km/s of the BCG and has certainly interacted with the BCG, and is likely bound to it. The comparison of optical and radio images shows curved filaments in H-alpha emission surrounding the resolved radio source. The velocity structure of the emission-line bar between the BCG nucleus and the companion galaxy provides strong evidence for an interaction between the two in the last ~50 Myrs. The age of the radio source is similar to the interaction time, so this interaction may have provoked an episode of radio activity. We estimate a star formation rate of >7 solar mass/yr based on the Halpha and archival UV data, a rate similar to, but somewhat lower than, the revised X-ray cooling rate of 10-30 solar masses/year estimated from XMM spectra by Peterson & workers. The Halpha nebula is limited to a region of high X-ray surface brightness and cool X-ray temperature. The detailed structures of H-alpha and X-ray gas differ. The peak of the X-ray emission is not the peak of H-alpha emission, nor does it lie in the BCG. The estimated age of the radio lobes and their interaction with the optical emission-line gas, the estimated timescale for depletion and accumulation of cold gas, and the dynamical time in the system are all similar, suggesting a common trigger mechanism.



قيم البحث

اقرأ أيضاً

We study the distribution of projected offsets between the cluster X-ray centroid and the brightest cluster galaxy (BCG) for 65 X-ray selected clusters from the Local Cluster Substructure Survey (LoCuSS), with a median redshift of z=0.23. We find a c lear correlation between X-ray/BCG projected offset and the logarithmic slope of the cluster gas density profile at 0.04r500 (alpha), implying that more dynamically disturbed clusters have weaker cool cores. Furthermore, there is a close correspondence between the activity of the BCG, in terms of detected H_alpha and radio emission, and the X-ray/BCG offset, with the line emitting galaxies all residing in clusters with X-ray/BCG offsets of <~15 kpc. Of the BCGs with alpha < -0.85 and an offset < 0.02r500, 96 per cent (23/24) have optical emission and 88 per cent (21/24) are radio active, while none has optical emission outside these criteria. We also study the cluster gas fraction (fgas) within r500 and find a significant correlation with X-ray/BCG projected offset. The mean fgas of the `small offset clusters (< 0.02r500) is 0.106+/-0.005 (sigma=0.03) compared to 0.145+/-0.009 (sigma=0.04) for those with an offset > 0.02r500, indicating that the total mass may be systematically underestimated in clusters with larger X-ray/BCG offsets. Our results imply a link between cool core strength and cluster dynamical state consistent with the view that cluster mergers can significantly perturb cool cores, and set new constraints on models of the evolution of the intracluster medium.
Recent observations of the interactions between radio sources and the X-ray-emitting gas in cooling flows in the cores of clusters of galaxies are reviewed. The radio sources inflate bubbles in the X-ray gas, which then rise buoyantly outward in the clusters transporting energy to the intracluster medium (ICM). The bright rims of gas around the radio bubbles are cool, rather than hot, and do not show signs of being strongly shocked. Energy deposited into the ICM over the lifetime of a cluster through several outbursts of a radio source helps to account for at least some of the gas that is missing in cooling flows at low temperatures.
176 - Frederic Bournaud 2011
This lecture reviews the fundamental physical processes involved in star formation in galaxy interactions and mergers. Interactions and mergers often drive intense starbursts, but the link between interstellar gas physics, large scale interactions, a nd active star formation is complex and not fully understood yet. Two processes can drive starbursts: radial inflows of gas can fuel nuclear starbursts, triggered gas turbulence and fragmentation can drive more extended starbursts in massive star clusters with high fractions of dense gas. Both modes are certainly required to account for the observed properties of starbursting mergers. A particular consequence is that star formation scaling laws are not universal, but vary from quiescent disks to starbursting mergers. High-resolution hydrodynamic simulations are used to illustrate the lectures.
We present a detailed study of the Circinus Galaxy, investigating its star formation, dust and gas properties both in the inner and outer disk. To achieve this, we obtained high-resolution Spitzer mid-infrared images with the IRAC (3.6, 5.8, 4.5, 8.0 micron) and MIPS (24 and 70 micron) instruments and sensitive HI data from the Australia Telescope Compact Array (ATCA) and the 64-m Parkes telescope. These were supplemented by CO maps from the Swedish-ESO Submillimetre Telescope (SEST). Because Circinus is hidden behind the Galactic Plane, we demonstrate the careful removal of foreground stars as well as large- and small-scale Galactic emission from the Spitzer images. We derive a visual extinction of Av = 2.1 mag from the Spectral Energy Distribution of the Circinus Galaxy and total stellar and gas masses of 9.5 x 10^{10} Msun and 9 x 10^9 Msun, respectively. Using various wavelength calibrations, we find obscured global star formation rates between 3 and 8 Msun yr^{-1}. Star forming regions in the inner spiral arms of Circinus, which are rich in HI, are beautifully unveiled in the Spitzer 8 micron image. The latter is dominated by polycyclic aromatic hydrocarbon (PAH) emission from heated interstellar dust. We find a good correlation between the 8 micron emission in the arms and regions of dense HI gas. The (PAH 8 micron) / 24 micron surface brightness ratio shows significant variations across the disk of Circinus.
We report ALMA Early Science CO(1-0) and CO(3-2) observations of the brightest cluster galaxy (BCG) in Abell 1664. The BCG contains 1.1x10^{10} solar masses of molecular gas divided roughly equally between two distinct velocity systems: one from -250 to +250 km/s centred on the BCGs systemic velocity and a high velocity system blueshifted by 570 km/s with respect to the systemic velocity. The BCGs systemic component shows a smooth velocity gradient across the BCG center with velocity proportional to radius suggestive of solid body rotation about the nucleus. However, the mass and velocity structure are highly asymmetric and there is little star formation coincident with a putative disk. It may be an inflow of gas that will settle into a disk over several 10^8 yr. The high velocity system consists of two gas clumps, each ~2 kpc across, located to the north and southeast of the nucleus. Each has a line of sight velocity spread of 250-300 km/s. The velocity of the gas in the high velocity system tends to increase towards the BCG center and could signify a massive high velocity flow onto the nucleus. However, the velocity gradient is not smooth and these structures are also coincident with low optical-UV surface brightness regions, which could indicate dust extinction associated with each clump. If so, the high velocity gas would be projected in front of the BCG and moving toward us along the line of sight in a massive outflow most likely driven by the AGN. A merger origin is unlikely but cannot be ruled out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا