ترغب بنشر مسار تعليمي؟ اضغط هنا

An Entropy Threshold for Strong H-alpha and Radio Emission in the Cores of Galaxy Clusters

256   0   0.0 ( 0 )
 نشر من قبل Kenneth Cavagnolo
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Our Chandra X-ray Observatory archival study of intracluster entropy in a sample of 222 galaxy clusters shows that H-alpha and radio emission from the brightest cluster galaxy are much more pronounced when the clusters core gas entropy is < 30 keV cm^2. The prevalence of H-alpha emission below this threshold indicates that it marks a dichotomy between clusters that can harbor multiphase gas and star formation in their cores and those that cannot. The fact that strong central radio emission also appears below this boundary suggests that AGN feedback turns on when the intracluster medium starts to condense, strengthening the case for AGN feedback as the mechanism that limits star formation in the Universes most luminous galaxies.

قيم البحث

اقرأ أيضاً

The studies of the evolution of galaxies in Galaxy Clusters have as a traditional complication the difficulty in establishing cluster membership of those sources detected in the field of view. The determination of spectroscopic redshifts involves lon g exposure times when it is needed to reach the cluster peripherical regions of/or clusters at moderately large redshifts, while photometric redshifts often present uncertainties too large to offer significant conclusions. The mapping of the cluster of galaxies with narrow band tunable filters makes it possible to reach large redshifts intervals with an accuracy high enough to establish the source membership of those presenting emission/absorption lines easily identifiable, as H alpha. Moreover, the wavelength scan can include other lines as [NII], [OIII] or $H_{beta}$ allowing to distinguish those sources with strong stellar formation activity and those with an active galactic nuclei. All this makes it possible to estimate the stellar formation rate of the galaxies observed. This, together with ancillary data in other wavelengths may lead to a good estimation of the stellar formation histories. It will shed new light over the galaxy evolution in clusters and will improve our understanding of galaxy evolution, especially in the outer cluster regions, usually less studied and with significant unexploited data that can not be correctly interpreted without redshift determination.
Cool cores of some galaxy clusters exhibit faint radio minihalos. Their origin is unclear; their study has been limited by their small number. We undertook a systematic search for minihalos in a large sample of X-ray luminous clusters with high-quali ty radio data. In this paper, we report four new minihalos (A 478, ZwCl 3146, RXJ 1532.9+3021 and A 2204), and five candidates, found in the reanalyzed archival Very Large Array observations. The radio luminosities of our minihalos and candidates are in the range $10^{23-25}$ W Hz$^{-1}$ at 1.4 GHz, consistent with this type of radio sources. Their sizes (40-160 kpc in radius) are somewhat smaller than those of the previously known minihalos. We combine our new detections with previously known minihalos, obtaining a total sample of 21 objects, and briefly compare the cluster radio properties to the average X-ray temperature and the total masses estimated from Planck. We find that nearly all clusters hosting minihalos are hot and massive. Beyond that, there is no clear correlation between the minihalo radio power and cluster temperature or mass (in contrast with the giant radio halos found in cluster mergers, whose radio luminosity correlates with the cluster mass). Chandra X-ray images indicate gas sloshing in the cool cores of most of our clusters, with minihalos contained within the sloshing regions in many of them. This supports the hypothesis that radio-emitting electrons are reaccelerated by sloshing. Advection of relativistic electrons by the sloshing gas may also play a role in the formation of the less-extended minihalos.
93 - J. ZuHone 2015
Astro-H will be the first X-ray observatory to employ a high-resolution microcalorimeter, capable of measuring the shift and width of individual spectral lines to the precision necessary for estimating the velocity of the diffuse plasma in galaxy clu sters. This new capability is expected to bring significant progress in understanding the dynamics, and therefore the physics, of the intracluster medium. However, because this plasma is optically thin, projection effects will be an important complicating factor in interpreting future Astro-H measurements. To study these effects in detail, we performed an analysis of the velocity field from simulations of a galaxy cluster experiencing gas sloshing, and generated synthetic X-ray spectra, convolved with model Astro-H Soft X-ray Spectrometer (SXS) responses. We find that the sloshing motions produce velocity signatures that will be observable by Astro-H in nearby clusters: the shifting of the line centroid produced by the fast-moving cold gas underneath the front surface, and line broadening produced by the smooth variation of this motion along the line of sight. The line shapes arising from inviscid or strongly viscous simulations are very similar, indicating that placing constraints on the gas viscosity from these measurements will be difficult. Our spectroscopic analysis demonstrates that, for adequate exposures, Astro-H will be able to recover the first two moments of the velocity distribution of these motions accurately, and in some cases multiple velocity components may be discerned. The simulations also confirm the importance of accurate treatment of PSF scattering in the interpretation of Astro-H/SXS spectra of cluster plasmas.
In a growing number of galaxy clusters diffuse extended radio sources have been found. These sources are not directly associated with individual cluster galaxies. The radio emission reveal the presence of cosmic rays and magnetic fields in the intrac luster medium (ICM). We classify diffuse cluster radio sources into radio halos, cluster radio shocks (relics), and revived AGN fossil plasma sources. Radio halo sources can be further divided into giant halos, mini-halos, and possible `intermediate sources. Halos are generally positioned at cluster center and their brightness approximately follows the distribution of the thermal ICM. Cluster radio shocks (relics) are polarized sources mostly found in the clusters periphery. They trace merger induced shock waves. Revived fossil plasma sources are characterized by their radio steep-spectra and often irregular morphologies. In this review we give an overview of the properties of diffuse cluster radio sources, with an emphasis on recent observational results. We discuss the resulting implications for the underlying physical acceleration processes that operate in the ICM, the role of relativistic fossil plasma, and the properties of ICM shocks and magnetic fields. We also compile an updated list of diffuse cluster radio sources which will be available on-line http://galaxyclusters.com. We end this review with a discussion on the detection of diffuse radio emission from the cosmic web.
Knowledge of the number density of H$alpha$ emitting galaxies is vital for assessing the scientific impact of the Euclid and WFIRST missions. In this work we present predictions from a galaxy formation model, Galacticus, for the cumulative number cou nts of H$alpha$-emitting galaxies. We couple Galacticus to three different dust attenuation methods and examine the counts using each method. A $chi^2$ minimisation approach is used to compare the model predictions to observed galaxy counts and calibrate the dust parameters. We find that weak dust attenuation is required for the Galacticus counts to be broadly consistent with the observations, though the optimum dust parameters return large values for $chi^2$, suggesting that further calibration of Galacticus is necessary. The model predictions are also consistent with observed estimates for the optical depth and the H$alpha$ luminosity function. Finally we present forecasts for the redshift distributions and number counts for two Euclid-like and one WFIRST-like survey. For a Euclid-like survey with redshift range $0.9leqslant zleqslant 1.8$ and H$alpha+{rm [NII]}$ blended flux limit of $2times 10^{-16}{rm erg},{rm s}^{-1},{rm cm}^{-2}$ we predict a number density between 3900--4800 galaxies per square degree. For a WFIRST-like survey with redshift range $1leqslant zleqslant 2$ and blended flux limit of $1times 10^{-16}{rm erg},{rm s}^{-1},{rm cm}^{-2}$ we predict a number density between 10400--15200 galaxies per square degree.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا