ترغب بنشر مسار تعليمي؟ اضغط هنا

Master equations are partial differential equations for measure-dependent unknowns, and are introduced to describe asymptotic equilibrium of large scale mean-field interacting systems, especially in games and control theory. In this paper we introduc e new semilinear master equations whose unknowns are functionals of both paths and path measures. They include state-dependent master equations, path-dependent partial differential equations (PPDEs), history information dependent master equations and time inconsistent (e.g. time-delayed) equations, which naturally arise in stochastic control theory and games. We give a classical solution to the master equation by introducing a new notation called strong vertical derivative (SVD) for path-dependent functionals, inspired by Dupires vertical derivative, and applying stochastic forward-backward system argument. Moreover, we consider a general non-smooth case with a functional mollifying method.
Recently, the performance of Pre-trained Language Models (PLMs) has been significantly improved by injecting knowledge facts to enhance their abilities of language understanding. For medical domains, the background knowledge sources are especially us eful, due to the massive medical terms and their complicated relations are difficult to understand in text. In this work, we introduce SMedBERT, a medical PLM trained on large-scale medical corpora, incorporating deep structured semantic knowledge from neighbors of linked-entity.In SMedBERT, the mention-neighbor hybrid attention is proposed to learn heterogeneous-entity information, which infuses the semantic representations of entity types into the homogeneous neighboring entity structure. Apart from knowledge integration as external features, we propose to employ the neighbors of linked-entities in the knowledge graph as additional global contexts of text mentions, allowing them to communicate via shared neighbors, thus enrich their semantic representations. Experiments demonstrate that SMedBERT significantly outperforms strong baselines in various knowledge-intensive Chinese medical tasks. It also improves the performance of other tasks such as question answering, question matching and natural language inference.
In recent years, cross-media hashing technique has attracted increasing attention for its high computation efficiency and low storage cost. However, the existing approaches still have some limitations, which need to be explored. 1) A fixed hash lengt h (e.g., 16bits or 32bits) is predefined before learning the binary codes. Therefore, these models need to be retrained when the hash length changes, that consumes additional computation power, reducing the scalability in practical applications. 2) Existing cross-modal approaches only explore the information in the original multimedia data to perform the hash learning, without exploiting the semantic information contained in the learned hash codes. To this end, we develop a novel Multiple hash cOdes jOint learNing method (MOON) for cross-media retrieval. Specifically, the developed MOON synchronously learns the hash codes with multiple lengths in a unified framework. Besides, to enhance the underlying discrimination, we combine the clues from the multimodal data, semantic labels and learned hash codes for hash learning. As far as we know, the proposed MOON is the first work to simultaneously learn different length hash codes without retraining in cross-media retrieval. Experiments on several databases show that our MOON can achieve promising performance, outperforming some recent competitive shallow and deep methods.
Traditional principal component analysis (PCA) is well known in high-dimensional data analysis, but it requires to express data by a matrix with observations to be continuous. To overcome the limitations, a new method called flexible PCA (FPCA) for e xponential family distributions is proposed. The goal is to ensure that it can be implemented to arbitrary shaped region for either count or continuous observations. The methodology of FPCA is developed under the framework of generalized linear models. It provides statistical models for FPCA not limited to matrix expressions of the data. A maximum likelihood approach is proposed to derive the decomposition when the number of principal components (PCs) is known. This naturally induces a penalized likelihood approach to determine the number of PCs when it is unknown. By modifying it for missing data problems, the proposed method is compared with previous PCA methods for missing data. The simulation study shows that the performance of FPCA is always better than its competitors. The application uses the proposed method to reduce the dimensionality of arbitrary shaped sub-regions of images and the global spread patterns of COVID-19 under normal and Poisson distributions, respectively.
In this paper, we provide a series of multi-tasking benchmarks for simultaneously detecting spoofing at the segmental and utterance levels in the PartialSpoof database. First, we propose the SELCNN network, which inserts squeeze-and-excitation (SE) b locks into a light convolutional neural network (LCNN) to enhance the capacity of hidden feature selection. Then, we implement multi-task learning (MTL) frameworks with SELCNN followed by bidirectional long short-term memory (Bi-LSTM) as the basic model. We discuss MTL in PartialSpoof in terms of architecture (uni-branch/multi-branch) and training strategies (from-scratch/warm-up) step-by-step. Experiments show that the multi-task model performs relatively better than single-task models. Also, in MTL, a binary-branch architecture more adequately utilizes information from two levels than a uni-branch model. For the binary-branch architecture, fine-tuning a warm-up model works better than training from scratch. Models can handle both segment-level and utterance-level predictions simultaneously overall under a binary-branch multi-task architecture. Furthermore, the multi-task model trained by fine-tuning a segmental warm-up model performs relatively better at both levels except on the evaluation set for segmental detection. Segmental detection should be explored further.
127 - Xinlin Zhang , Hengfa Lu , Di Guo 2021
The combination of the sparse sampling and the low-rank structured matrix reconstruction has shown promising performance, enabling a significant reduction of the magnetic resonance imaging data acquisition time. However, the low-rank structured appro aches demand considerable memory consumption and are time-consuming due to a noticeable number of matrix operations performed on the huge-size block Hankel-like matrix. In this work, we proposed a novel framework to utilize the low-rank property but meanwhile to achieve faster reconstructions and promising results. The framework allows us to enforce the low-rankness of Hankel matrices constructing from 1D vectors instead of 2D matrices from 1D vectors and thus avoid the construction of huge block Hankel matrix for 2D k-space matrices. Moreover, under this framework, we can easily incorporate other information, such as the smooth phase of the image and the low-rankness in the parameter dimension, to further improve the image quality. We built and validated two models for parallel and parameter magnetic resonance imaging experiments, respectively. Our retrospective in-vivo results indicate that the proposed approaches enable faster reconstructions than the state-of-the-art approaches, e.g., about 8x faster than STDLRSPIRiT, and faithful removal of undersampling artifacts.
178 - Lin Zhang , Ling Feng , Kan Chen 2021
The success of deep neural networks in real-world problems has prompted many attempts to explain their training dynamics and generalization performance, but more guiding principles for the training of neural networks are still needed. Motivated by th e edge of chaos principle behind the optimal performance of neural networks, we study the role of various hyperparameters in modern neural network training algorithms in terms of the order-chaos phase diagram. In particular, we study a fully analytical feedforward neural network trained on the widely adopted Fashion-MNIST dataset, and study the dynamics associated with the hyperparameters in back-propagation during the training process. We find that for the basic algorithm of stochastic gradient descent with momentum, in the range around the commonly used hyperparameter values, clear scaling relations are present with respect to the training time during the ordered phase in the phase diagram, and the models optimal generalization power at the edge of chaos is similar across different training parameter combinations. In the chaotic phase, the same scaling no longer exists. The scaling allows us to choose the training parameters to achieve faster training without sacrificing performance. In addition, we find that the commonly used model regularization method - weight decay - effectively pushes the model towards the ordered phase to achieve better performance. Leveraging on this fact and the scaling relations in the other hyperparameters, we derived a principled guideline for hyperparameter determination, such that the model can achieve optimal performance by saturating it at the edge of chaos. Demonstrated on this simple neural network model and training algorithm, our work improves the understanding of neural network training dynamics, and can potentially be extended to guiding principles of more complex model architectures and algorithms.
Transcripts generated by automatic speech recognition (ASR) systems for spoken documents lack structural annotations such as paragraphs, significantly reducing their readability. Automatically predicting paragraph segmentation for spoken documents ma y both improve readability and downstream NLP performance such as summarization and machine reading comprehension. We propose a sequence model with self-adaptive sliding window for accurate and efficient paragraph segmentation. We also propose an approach to exploit phonetic information, which significantly improves robustness of spoken document segmentation to ASR errors. Evaluations are conducted on the English Wiki-727K document segmentation benchmark, a Chinese Wikipedia-based document segmentation dataset we created, and an in-house Chinese spoken document dataset. Our proposed model outperforms the state-of-the-art (SOTA) model based on the same BERT-Base, increasing segmentation F1 on the English benchmark by 4.2 points and on Chinese datasets by 4.3-10.1 points, while reducing inference time to less than 1/6 of inference time of the current SOTA.
We have studied polarized image of a Schwarzschild black hole with an equatorial thin accretion disk as photon couples to Weyl tensor. The birefringence of photon originating from the coupling affect the black hole shadow, the thin disk pattern and i ts luminosity distribution. We also analyze the observed polarized intensity in the sky plane. The observed polarized intensity in the bright region is stronger than that in the darker region. The stronger effect of the coupling on the observed polarized vector appears only in the bright region close to black hole. These features in the polarized image could help us to understand black hole shadow, the thin accretion disk and the coupling between photon and Weyl tensor.
With the Deep Neural Networks (DNNs) as a powerful function approximator, Deep Reinforcement Learning (DRL) has been excellently demonstrated on robotic control tasks. Compared to DNNs with vanilla artificial neurons, the biologically plausible Spiki ng Neural Network (SNN) contains a diverse population of spiking neurons, making it naturally powerful on state representation with spatial and temporal information. Based on a hybrid learning framework, where a spike actor-network infers actions from states and a deep critic network evaluates the actor, we propose a Population-coding and Dynamic-neurons improved Spiking Actor Network (PDSAN) for efficient state representation from two different scales: input coding and neuronal coding. For input coding, we apply population coding with dynamically receptive fields to directly encode each input state component. For neuronal coding, we propose different types of dynamic-neurons (containing 1st-order and 2nd-order neuronal dynamics) to describe much more complex neuronal dynamics. Finally, the PDSAN is trained in conjunction with deep critic networks using the Twin Delayed Deep Deterministic policy gradient algorithm (TD3-PDSAN). Extensive experimental results show that our TD3-PDSAN model achieves better performance than state-of-the-art models on four OpenAI gym benchmark tasks. It is an important attempt to improve RL with SNN towards the effective computation satisfying biological plausibility.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا